Jin, L., Yu, M., & Du, X. (2020). Size Effect on Static Splitting Tensile Strength of Concrete: Experimental and Numerical Studies. Journal of Materials in Civil Engineering, 32(10), 04020308. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003382
Mahmud, G.H., Yang, Z., & Hassan, A. (2013.) Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials, 48, 1027–1034. https://doi.org/10.1016/j.conbuildmat.2013.07.061
Awinda, K., Chen, J., & Barnett, S.J. (2016). Investigating geometrical size effect on the flexural strength of the ultrahigh performance fibre reinforced concrete using the cohesive crack model Construction and Building Materials, 105, 123–13. https://doi.org/10.1016/j.conbuildmat.2015.12.012
Vlietstra, D. (2018). Does structural synthetic fibre reduce or eliminate the well documented size effect phenomena prevalent in concrete structures? (Dissertation). University of Leeds.
Galeote, E., Blanco, A., & Fuente, A. (2020). Design-oriented approach to determine FRC constitutive law parameters considering the size effect. Composite Structures, 239, 112036. https://doi.org/10.1016/j.compstruct.2020.112036
CNR 204/2006. (2006). Guide for the design and construction of fibre-reinforced concrete structures. Advisory Committee on Technical Recommendations for Construction, Rome, 2006.
Vandewalle, L., et al. (2003). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: – design method – Final recommendation. Materials and Structures, 36(262), 560–567. https://doi.org/10.1617/14007.
di Prisco, M., Colombo, M., & Dozio, D. (2013). Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Structural Concrete, 14(4), 342–361. https://doi.org/10.1002/suco.201300021.
Vandewalle, L., et al. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Design of steel fibre reinforced concrete using the - in method: principles and applications. Materials and Structures, 35(249), 262–278. https://doi.org/10.1007/BF02482132.
Tóth, M., & Pluzsik, A. (2020). Verification of a new semi discrete beam model for fibre reinforced concrete beams. Journal of Materials in Civil Engineering, 32(7), 04020156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003218.
RILEM (1990). Size-effect method for determining fracture energy and process zone size of concrete. Materials and Structures, 23, 461–465. (RILEM Draft Recommendation, TC 89-FMT Fracture Mechanics of Concrete – Test methods.)
Tóth, M., Pluzsik, A., Pluzsik, T., & Morlin, B. (2018). Experimental Investigations of Pull-out Behaviour of Synthetic Fibres. Architecture Civil Engineering Environment, 11(2), 89–95. https://doi.org/10.21307/ACEE-2018-026.
Tóth, M., & Pluzsik, A. (2021). Using SDA Model in the Designing Process of Fibre Reinforced Concrete. Journal of Materials in Civil Engineering, 33(8), 04021191. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003803
Tóth, M., & Pluzsik, A. (2018). Semi-discrete analytical beam model for fibre reinforced concrete beams. In Proc., 12th Int. Ph.D. Symp. in Civil Engineering Czech Technical University in Prague, edited by A. Kohoutková, 379–386. Lausanne, Switzerland: International Federation for Structural Concrete.