Have a personal or library account? Click to login

Size Effect of Synthetic Fibre Reinforced Concrete – Investigation using a Semi-Discrete Analytical Beam Model

Open Access
|Oct 2023

References

  1. Bazant, Z. P., & Planas, B. (1998). Fracture and size effect in concrete and other quasibrittle materials. London: CRC Press.
  2. Bazant, Z.P. (1984). Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, 110(4), 518–535 https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
  3. Jin, L., Yu, M., & Du, X. (2020). Size Effect on Static Splitting Tensile Strength of Concrete: Experimental and Numerical Studies. Journal of Materials in Civil Engineering, 32(10), 04020308. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003382
  4. Nguyen, D., Kim, D.J., Ryu, G.S., & Koh, K.T. (2013). Size effect on flexural behaviour of ultra-high-performance hybrid fibre-reinforced concrete. Composites Part B-engineering, 45(1), 1104–1116. https://doi.org/10.1016/j.compositesb.2012.07.012
  5. Mahmud, G.H., Yang, Z., & Hassan, A. (2013.) Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials, 48, 1027–1034. https://doi.org/10.1016/j.conbuildmat.2013.07.061
  6. Yoo, D.Y., Banthia, N., Yang, J.M., & Yoon, Y.S. (2016). Size effect in normal- and high-strength amorphous metallic and steel fibre reinforced concrete beams. Construction and Building Materials, 121, 676–685. https://doi.org/10.1016/j.conbuildmat.2016.06.040
  7. Awinda, K., Chen, J., & Barnett, S.J. (2016). Investigating geometrical size effect on the flexural strength of the ultrahigh performance fibre reinforced concrete using the cohesive crack model Construction and Building Materials, 105, 123–13. https://doi.org/10.1016/j.conbuildmat.2015.12.012
  8. Vlietstra, D. (2018). Does structural synthetic fibre reduce or eliminate the well documented size effect phenomena prevalent in concrete structures? (Dissertation). University of Leeds.
  9. Galeote, E., Blanco, A., & Fuente, A. (2020). Design-oriented approach to determine FRC constitutive law parameters considering the size effect. Composite Structures, 239, 112036. https://doi.org/10.1016/j.compstruct.2020.112036
  10. fib (Fédération internationale du béton) (2010). Model code for concrete structures 2010. Lausanne, Switzerland.
  11. CNR 204/2006. (2006). Guide for the design and construction of fibre-reinforced concrete structures. Advisory Committee on Technical Recommendations for Construction, Rome, 2006.
  12. DBV (Deutscher Beton und Bautechnik Verein) (2001). Stahlfaserbeton. Deutsche Beton Vereins, 2001.
  13. Vandewalle, L., et al. (2003). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: – design method – Final recommendation. Materials and Structures, 36(262), 560–567. https://doi.org/10.1617/14007.
  14. Blanco, A., et al. (2013). Application of constitutive models in European codes to RC–FRC. Construction and Building Materials, 40, 246–259. https://doi.org/10.1016/j.conbuildmat.2012.09.096
  15. di Prisco, M., Colombo, M., & Dozio, D. (2013). Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Structural Concrete, 14(4), 342–361. https://doi.org/10.1002/suco.201300021.
  16. ACI Committee 544. (Sept.–Oct. 1998). Design considerations for steel fibre reinforced concrete. ACI Structural Journal, 85(5), 563–580.
  17. ACI Committee 544. (2002). State-of-the-Art Report on Fibre Reinforced Concrete. ACI Structural Journal, 544.1R-96.
  18. Vandewalle, L., et al. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Design of steel fibre reinforced concrete using the - in method: principles and applications. Materials and Structures, 35(249), 262–278. https://doi.org/10.1007/BF02482132.
  19. Tóth, M., & Pluzsik, A. (2020). Verification of a new semi discrete beam model for fibre reinforced concrete beams. Journal of Materials in Civil Engineering, 32(7), 04020156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003218.
  20. RILEM (1990). Size-effect method for determining fracture energy and process zone size of concrete. Materials and Structures, 23, 461–465. (RILEM Draft Recommendation, TC 89-FMT Fracture Mechanics of Concrete – Test methods.)
  21. Vandewalle, L., et al. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Bending test—Final recommendation. Materials and Structures, 35(253), 579–582. https://doi.org/10.1617/13884.
  22. Tóth, M., Pluzsik, A., Pluzsik, T., & Morlin, B. (2018). Experimental Investigations of Pull-out Behaviour of Synthetic Fibres. Architecture Civil Engineering Environment, 11(2), 89–95. https://doi.org/10.21307/ACEE-2018-026.
  23. Tóth, M., & Pluzsik, A. (2021). Using SDA Model in the Designing Process of Fibre Reinforced Concrete. Journal of Materials in Civil Engineering, 33(8), 04021191. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003803
  24. Tóth, M., & Pluzsik, A. (2018). Semi-discrete analytical beam model for fibre reinforced concrete beams. In Proc., 12th Int. Ph.D. Symp. in Civil Engineering Czech Technical University in Prague, edited by A. Kohoutková, 379–386. Lausanne, Switzerland: International Federation for Structural Concrete.
DOI: https://doi.org/10.2478/acee-2023-0039 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 117 - 129
Submitted on: May 12, 2022
Accepted on: Apr 17, 2023
Published on: Oct 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Mária Erdélyiné Tóth, Anikó Pluzsik, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.