Have a personal or library account? Click to login

Dent-to-Stiffener Evaluation Concept for Thin-Walled Steel Cylinders

Open Access
|Oct 2023

References

  1. Zeybek, Ö. (2022). The stability of anchored cylindrical steel tanks with a secondary stiffening ring. International Journal of Pressure Vessels and Piping, 198, 104661.
  2. Zeybek, Ö., & Özkılıç, Y. O. (2023). Effects of reinforcing steel tanks with intermediate ring stiffeners on wind buckling during construction. Journal of Constructional Steel Research, 203, 107832.
  3. Chen, L., Rotter, J. M., & Doerich, C. (2011). Buckling of cylindrical shells with stepwise variable wall thickness under uniform external pressure. Engineering structures, 33(12), 3570–3578.
  4. Broggi, M. S. G. I., & Schuëller, G. I. (2011). Efficient modeling of imperfections for buckling analysis of composite cylindrical shells. Engineering Structures, 33(5), 1796–1806.
  5. Ghazijahani, T. G., Jiao, H., & Holloway, D. (2014). Experimental study on damaged cylindrical shells under compression. Thin-Walled Structures, 80, 13–21.
  6. Ghazijahani, T. G., Jiao, H., & Holloway, D. (2014). Experiments on dented cylindrical shells under peripheral pressure. Thin-Walled Structures, 84, 50–58.
  7. Gerasimidis, S., Virot, E., Hutchinson, J. W., & Rubinstein, S. M. (2018). On establishing buckling knockdowns for imperfection-sensitive shell structures. Journal of Applied Mechanics, 85(9).
  8. Fatemi, S. M., Showkati, H., & Maali, M. (2013). Experiments on imperfect cylindrical shells under uniform external pressure. Thin-Walled Structures, 65, 14–25.
  9. Aydin, A. C., Maali, M., Kiliç, M., Bayrak, B., & Akarsu, O. (2023). A numerical perspective for CFRP wrapped thin walled steel cylinders. Steel Construction. Article in Press.
  10. Pan, J., & Liang, S. (2020). Buckling analysis of open-topped steel tanks under external pressure. SN Applied Sciences, 2(4), 535.
  11. Chen, L., Rotter, J. M., & Doerich-Stavridis, C. (2012). Practical calculations for uniform external pressure buckling in cylindrical shells with stepped walls. Thin-Walled Structures, 61, 162–168.
  12. Korucuk, F. M. A., Maali, M., Kılıç, M., & Aydın, A. C. (2019). Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells. Thin-walled structures, 143, 106259.
  13. Rathinam, N., & Prabu, B. (2015). Numerical study on influence of dent parameters on critical buckling pressure of thin cylindrical shell subjected to uniform lateral pressure. Thin-Walled Structures, 88, 1–15.
  14. Ghazijahani, T. G., Dizaji, H. S., Nozohor, J., & Zirakian, T. (2015). Experiments on corrugated thin cylindrical shells under uniform external pressure. Ocean Engineering, 106, 68–76.
  15. Zeybek, Ö. (2022). The stability of anchored cylindrical steel tanks with a secondary stiffening ring. International Journal of Pressure Vessels and Piping, 198, 104661.
  16. Jawad, M. (2012). Theory and design of plate and shell structures. Springer Science & Business Media.
  17. Ross, C. T. (2011). Pressure vessels: external pressure technology. Elsevier.
  18. Ventsel, E., Krauthammer, T., & Carrera, E. J. A. M. R. (2002). Thin plates and shells: theory, analysis, and applications. Appl. Mech. Rev., 55(4), B72–B73.
  19. Seide, P., Weingarten, V., & Petersen, J. (1965). NASA/SP-8007, Buckling of thinwalled circular cylinders. Nasa Space Vehicle Design Criteria (Structures).
  20. Teng, J. G., Zhao, Y., & Lam, L. (2001). Techniques for buckling experiments on steel silo transition junctions. Thin-Walled Structures, 39(8), 685–707.
  21. Aydin, A. C., Maali, M., Kiliç, M., Bayrak, B., & Akarsu, O. (2023). A numerical perspective for CFRP wrapped thin walled steel cylinders. Steel Construction.
  22. ANSYS, I., Workbench user's guide. 2016, Release.
  23. Song, C. Y., Teng, J. G., & Rotter, J. M. (2004). Imperfection sensitivity of thin elastic cylindrical shells subject to partial axial compression. International Journal of Solids and Structures, 41(24–25), 7155–7180.
  24. Cai, M., Holst, J. M. F. G., & Rotter, J. M. (2002, June). Buckling strength of thin cylindrical shells under localized axial compression. In EM2002, 15th ASCE Engineering Mechanics Conference (pp. 2–5). New York: Columbia University.
  25. Prabu, B., Raviprakash, A. V., & Venkatraman, A. (2010). Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression. Thin-Walled Structures, 48(8), 639–649.
  26. Gardner, L., & Ashraf, M. (2006). Structural design for non-linear metallic materials. Engineering structures, 28(6), 926–934.
  27. Combescure, A., & Gusic, G. (2001). Nonlinear buckling of cylinders under external pressure with nonaxisymmetric thickness imperfections using the COMI axisymmetric shell element. International Journal of Solids and Structures, 38(34–35), 6207–6226.
  28. Windenburg, D. F., & Trilling, C. (1934). Collapse by instability of thin cylindrical shells under external pressure. Trans. Asme, 11, 819–825.
DOI: https://doi.org/10.2478/acee-2023-0032 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 43 - 54
Submitted on: Sep 20, 2022
Accepted on: Jun 16, 2023
Published on: Oct 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Oğuzhan Akarsu, Barış Bayrak, Mahmut Kiliç, Mahyar Maali, Abdulkadir Cüneyt Aydin, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.