Have a personal or library account? Click to login
Analysis of the Degradation Process of Sand-Lime Plasters Under the Impact of Crystallization Pressure Cover

Analysis of the Degradation Process of Sand-Lime Plasters Under the Impact of Crystallization Pressure

Open Access
|Jul 2023

References

  1. J. Ślusarek, (2008). Problems of durability of selected concrete structures (in Polish), Monography No. 162, Publishing House of the Silesian University of Technology, Gliwice.
  2. J. Ślusarek, (2007). Surface waterproof protection of concrete structures, EJPAU, 10(4), 26.
  3. J. Wyrwał, (1989). Moisture movement in porous materials and building partitions (in Polish), Studies and Monographs, issue 31, WSI, Opole.
  4. J. Ślusarek and others, (1990–2020). Technical expertises carried out in the years 1990–2020 (in Polish).
  5. J. Bochen, B. Słomka-Słupik, J. Ślusarek, (2021). Experimental study on salt crystallization in plasters subjected to simulate groundwater capillary rise, Con Build Mater 308(1), 125039.
  6. Bochen Jerzy, Słomka-Słupik Barbara, Podwórny J., (2018). Diagnostic tests of salt efflorescence on restored facades. Part 2: Research of mortars and plasters, Ochrona przed Korozją. 61(2), 43–47, ISSN: 0473-7733 e-ISSN: 2449-9501, DOI: 10.15199/40.2018.2.4
  7. W. Kurdowski, (2010). The chemistry of cement and concrete (in Polish). WN PWN Warsaw 2010, SPC Cracow.
  8. J. Ślusarek, (2012). The theoretical fundamentals of heat and moisture transport in hardening concrete, Cem Wap Bet 5, 286–294.
  9. A.M. Neville, (2012). Concrete properties (in Polish), SPC, Cracow.
  10. IUPAC (1972). Manual of symbols and terminology. Appendix II, Part I. Pure and Applied Chemistry, 31(4), 577–621.
  11. G.A. Aksielrud, M.A. Altszuler, (1987). Movement of mass in porous bodies (in Polish), Chemical Engineering Series, WNT, Warsaw.
  12. A. Alsabry, (2010). Dynamics of capillary rise in masonry walls (in Polish). Przegląd Budowlany, 9, 46–48.
  13. Thaulow N., Sahu S., (2004). Mechanism of concrete deterioration due to salt crystallization, Materials Characterization 53, 123–127.
  14. L. Pel, H. Huinink, K. Kopinga, R.P.J. van Hees, O.C.G. Adan, (2004). Constr. and Build. Mat. 18, 309.
  15. C.W. Correns, (1949). Growth and dissolution of crystals under linear pressure, Discuss Faraday Soc., 5, 267–71.
  16. G.W. Scherer, (4–6 September 2002). Proc. Intern. RILEM TC 186-ISA Workshop, ed. K. Scrivener and J. Skalny, Villars, Switzerland.
  17. L. Czarnecki, T. Broniewski, O. Henning, (1994). Chemistry in Construction (in Polish), Arkady, Warsaw.
  18. H. Szeląg, (2008). Factors governing the stresses appearing in the mortars of expansive cement, Part 1. Cem Wap Bet 6, 315–325.
  19. M. Angeli, J-P. Bigas, D. Bernavente, B. Menendez, R. Hebert, et al. (2007). Salt crystallization in pores: quantification of damage. Environmental Geolog, Springer-Verlag New York, Inc., 5(2), 187–195.
  20. L. Falchi, D. Slanzi, L. Speri, I. Poli, E. Zendri., (2017). Optimization of sustainable, NaCl-resistant and water-reppelent renders through evolutionary experimental design. Construction and Building Materials 147, 876–889.
  21. P.J. van Hees Rob, S. Naldini, R.J. Delgado, (2009). Plasters and renders for salt laden substrates, Con Build Mater, 23, 1714–1718.
  22. C. Groot, R. van Hees, T. Wijffels, (2009). Selection of plasters and renders for salt laden masonry substrates, Con Build Mater, 23, 1743–1750.
  23. H.P. Huinink, J. Petkovic, L. Pel, K. Kopinga, (2006). Water and salt transport in plaster/substrate systems, HERON 51, 1, 9–31.
  24. J.Petkovic, H.P. Huinink, L. Pel, K. Kopinga, R.P.J. van Hees, (2007). Salt transport in plaster/substrate layers, Materials and Structures 40, 475–490.
  25. J.Petkovic, H.P. Huinink, L. Pel, K. Kopinga, R.P.J. van Hees, (2010). Moisture and salt transport in three-layer plaster/substrate systems, Con Build Mater 24, 118–127.
  26. A. Arizzi, H. Viles, G. Cultrone, (2012). Experimental testing of the durability of lime-based mortars used for rendering historic buildings, Con Build Mater, 28, 807–818.
  27. W. Brachaczek, (2018). Study of the impact of microstructure and sorption properties of the renovation plasters on the wall drying rate, Periodica Polytechnica Civil Engineering, paper 11822.
  28. W. Brachaczek, (2018). Microstructure of renovation plasters and their resistance to salt, Con Build Mater 182, 418–426.
  29. PN-EN 1542 Products and systems for the protection and repair of concrete structures – Test methods – Measurement of adhesion by peeling (in Polish).
  30. N.I. Biezuchow, (1957). Theory of elasticity and plasticity (in Polish), PWN, Warsaw.
  31. EN 196-2:2005 Methods of cement tests, part 2. Chemical analyses of cement (in Polish).
  32. Ł. Drobiec, R. Jasiński, A. Piekarczyk, (2013). Masonry structures according to Eurocode 6 and related standards (in Polish), Polish Scientific Publishers PWN, Warsaw.
  33. PN-EN 10104:2005 Requirements for general purpose masonry mortars. Mortars with a specific material composition, produced on construction site (in Polish).
  34. L. Suwalski, (1964). Concrete Structures, Volume II, Theory of concrete and reinforced concrete (in Polish), Arkady, Warsaw.
  35. M.F. La Russa, S.A. Ruffolo, (2021). Mortars and plasters – How to characterize mortar and plaster degradation, Archaeol Anthropol Sci 13, 165. https://doi.org/10.1007/s12520-021-01405-1
DOI: https://doi.org/10.2478/acee-2023-0023 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 137 - 149
Submitted on: Apr 26, 2022
Accepted on: Mar 1, 2023
Published on: Jul 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Jan Ślusarek, Barbara Słomka-Słupik, Jerzy Bochen, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.