Have a personal or library account? Click to login
Analysis of the Degradation Process of Sand-Lime Plasters Under the Impact of Crystallization Pressure Cover

Analysis of the Degradation Process of Sand-Lime Plasters Under the Impact of Crystallization Pressure

Open Access
|Jul 2023

Figures & Tables

Figure 1.

Degradation of basement wall plaster in the single-family residential building [4]
Degradation of basement wall plaster in the single-family residential building [4]

Figure 2.

Tensile strength measurement of plaster while stretching the sample
Tensile strength measurement of plaster while stretching the sample

Figure 3.

Polar-symmetric deformation of a thick-walled spherical tank: a) general view of the model, b) load diagram, c) stress distribution (circumferential stress σt = σz, normal stress σr, as in [30])
Polar-symmetric deformation of a thick-walled spherical tank: a) general view of the model, b) load diagram, c) stress distribution (circumferential stress σt = σz, normal stress σr, as in [30])

Figure 4.

Schematic of the adopted porous plaster model
Schematic of the adopted porous plaster model

Figure 5.

Results of tensile strength of the tested sand-lime plaster
Results of tensile strength of the tested sand-lime plaster

Figure 6.

Values of circumferential stresses depending on internal radius
Values of circumferential stresses depending on internal radius

Figure 7.

Exemplary results of porosimetric tests of sample 3
Exemplary results of porosimetric tests of sample 3

Crystallization pressure of portlandite for different temperatures and supersaturation degrees

sPcryst [MPa]
273.15 K283.15 K293.15 K
1000
1.112.7613.2313.69
1.554.2856.2758.26
292.8096.1999.59
5215.46223.35231.24
10308.26319.54330.83

Values of circumferential stresses as a function of expansion pressure

Pa [MPa]1.02.03.04.05.06.07.015.020.0
σt [MPa]1.072.153.224.35.376.447.5216.1121.4

Parameters of plaster models (Fig_ 4)

Share in pore radii range [%]Total open porosity [%]Corresponding radius “ai” [cm]Modeled porosity [%]
3.15 a0 = 0.206P0 = 0.8719
23.9627.68a1= 0.405P1 = 6.6321
62.08 a2 = 0.556P2 =17.1837
10.81 a3 = 0.310P3 = 2.9922

Crystallization pressure of brucite for different temperatures and supersaturation degrees

sPcryst [MPa]
273.15 K283.15 K293.15 K
1000
1.116.8817.5018.12
1.571.8374.4677.09
2122.79127.28131.79
5285.10295.54305.98
10407.89422.83437.76

Circumferential stresses “σt” for b=1, 1_25 and 1_5

aP for b=1σtaP for b=1.25σtaP for b=1.5σt
0.10.0010.5020.10.0005120.5010.10.0002960.5
0.150.0033750.5050.150.0017280.5030.150.0010.502
0.20.0080.5120.20.0040960.5060.20.0023700.504
0.250.0156250.5240.250.0080.5120.250.0046290.507
0.30.0270.5420.30.0138240.5210.30.0080.512
0.350.0428750.5670.350.0219520.5340.350.0127040.519
0.40.0640.6030.40.0327680.5510.40.0189630.529
0.50.1250.7140.50.0640.6030.50.0370370.558
0.60.2160.9130.60.1105920.6870.60.0640.603
0.70.3431.2830.70.1756160.820.70.101630.67
0.80.5122.0740.80.2621441.0330.80.1517040.768
0.90.7294.5350.90.3732481.3930.90.2160.913

Circumferential stresses “σt” for b=1_75, 2 and 3

aP for b=1.75σtaP for b=2σtaP for b=3σt
0.10.0001870.50.10.0001250.50.10.0000370.5
0.150.0006300.5010.150.0004220.5010.150.0001250.5
0.20.0010.5020.20.0010.5020.20.0002960.5
0.250.0029150.5040.250.0019530.5030.250.0005780.501
0.30.0050380.5080.30.0033750.5050.30.0010.502
0.350.0080.5120.350.0053590.5080.350.001580.5023
0.40.0119420.5180.40.0080.5120.40.002370.504
0.50.0233240.5360.50.0156250.5240.50.004620.507
0.60.0403030.5630.60.0270.5420.60.0080.512
0.70.0640.6030.70.0428750.5670.70.01270.519
0.80.0955340.6580.80.0640.6030.80.0190.529
0.90.1360230.7360.90.0911250.650.90.0270.542

Crystallization pressure of ettringite for different temperatures and supersaturation degrees

sPcryst [MPa]
273.15 K283.15 K293.15 K
1000
1.14.354.514.67
1.518.5219.2019.88
231.6632.8233.98
573.5276.2178.90
10105.18109.03112.88

Crystallization pressure of calcite at different temperatures

sPcryst [MPa]
273.15 K283.15 K293.15 K
1.000000
1.0010.120.130.13
1.0020.250.250.26
1.0030.370.380.39
1.0040.490.510.53
1.0050.610.630.66
1.0060.730.760.79
1.0070.860.890.92
1.0080.981.011.05
1.0091.11.141.18
1.011.221.261.31
1.022.432.522.61
1.033.633.763.89
1.044.814.995.16
1.055.986.26.42
1.067.157.417.67
1.078.38.68.91
1.089.449.7810.1
1.0910.61111.3
1.111.712.112.5
1.549.751.553.4
28588.191.2
5197205212
10282293303

Values of circumferential stresses as a function as internal radius

σt [MPa]Pa [MPa]
a [cm]1.02.03.04.05.06.07.015.020.0
0.2060.511.031.542.052.573.083.597.7010.30
0.3100.551.091.642.182.733.283.828.1910.90
0.3980.601.201.802.403.003.614.219.0112.02
0.3980.811.622.433.254.064.875.6812.216.23

Results of porosimetric tests

Tested parameterUnitSample 2Sample 3
Total surface aream2/g1.8371.440
Volume median pore diameterμm1.281.84
Apparent densityg/ml1.891.79
Specific gravityg/ml2.552.48
Open porosity%26.0127.68
Permeabilitymdarcy57.068.3
Tortuosity-9.79.1
Pore size distribution
P3> 90 μm%6.215.42
60–90 μm%1.351.33
30–60 μm%1.954.25
20–30 μm%1.303.85
P210–20 μm%2.327.89
1–10 μm%43.5643.95
0.5–1 μm%16.2014.04
P10.25–0.5 μm%10.287.23
0.1–0.25 μm%8.455.84
0.05–0.1 μm%5.234.00
P00.025–0.05 μm%1.791.45
0.01–0.025 μm%1.330.75
0.006–0.01 μm%0.030.00

Tensile strength of mortar based on standard data [33]

Compressive strength class of mortar [MPa]fm [MPa]fmx [MPa]fm,t [MPa]
M15153.51.98
M10102.51.43
M551.60.95
M2.52.50.80.48
DOI: https://doi.org/10.2478/acee-2023-0023 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 137 - 149
Submitted on: Apr 26, 2022
Accepted on: Mar 1, 2023
Published on: Jul 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Jan Ślusarek, Barbara Słomka-Słupik, Jerzy Bochen, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.