Have a personal or library account? Click to login
Analysis of Using the Empirical Model of Organic Soil Consolidation to Predict Settlement Cover

Analysis of Using the Empirical Model of Organic Soil Consolidation to Predict Settlement

Open Access
|Jul 2023

Abstract

The paper describes two models for determining the constrained elasticity modulus of organic soils based on the settlement of an overloading embankment. In these methods, based on the settlement of the embankment of the load exerted on the subsoil, using the inverse problem, it is possible to determine the constrained modulus. A parameter determined in this way can also be determined during consolidation. Changes in the settlement at successive stages of consolidation can be used to determine the constrained modulus of the organic soil at a given point in time. Assuming a “temporarily stable” (quasi-stationary) state at each analysed stage of consolidation. The constrained elasticity modulus was determined for the settling at a given moment. constrained modulus tests of organic soils were carried out for two embankments previously described in the literature. In this case, the modulus was also analysed during consolidation. These embankments are founded on peat and peat-gyttja substrates. In both cases, the layer of organic soil was 4 m. The presented methods with the assumption of a one-dimensional state of deformation, despite the state of spatial stress, can be used during construction using the “design and build” technology. The constrained modulus determined from the embankment overload will represent the actual deformations – volumetric deformations (including other deformations that actually occurred) during the consolidation period. The paper was concluded with several conclusions.

DOI: https://doi.org/10.2478/acee-2023-0020 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 111 - 117
Submitted on: Jan 15, 2023
Accepted on: Mar 27, 2023
Published on: Jul 20, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Zygmunt Meyer, Magdalena Olszewska, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.