References
- Kowalska, B., Musz-Pomorska, A., & Widomski, M. K. (2016). Próba oceny wpływu rur wodociągowych z tworzyw sztucznych na wybrane właściwości organoleptyczne wody (An attempt to evaluate the effect of plastic water pipes on selected organoleptic properties of water). Ochrona Środowiska, 38(1), 53–56.
- Osenbrück, K., Gläser, H. R., Knöller, K., Weise, S. M., Möder, M., Wennrich, R. & Strauch, G. (2007). Sources and transport of selected organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water Research, 41(15), 3259–3270.
- Heberer, T., & Feldmann, D. (2005). Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents – modeling versus measurements. Journal of Hazardous Materials, 122(3), 211–218.
- Mujathel, A. M., El-Barky, W., Fayed, M., & Aly, S. A. (2022). Trihalomethane evaluation in chlorinated treated drinking water sources in Saudi Arabia (Aseer region a case study). Alexandria Engineering Journal, 61(12), 12699–12711.
- Pérez-Lucas, G., Martínez-Menchón, M., Vela, N., & Navarro, S. (2022). Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). Journal of Environmental Management, 321, 115936.
- Chaukura, N., Marais, S. S., Moyo, W., Mbali, N., Thakalekoala, L. C., Ingwani, T., ... & Nkambule, T. T. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water-A review. Journal of Environmental Chemical Engineering, 8(2), 103659.
- Pérez-Lucas, G., Martínez-Menchón, M., Vela, N., & Navarro, S. (2022). Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). Journal of Environmental Management, 321, 115936.
- Dubey, S., Gusain, D., Sharma, Y. C., & Bux, F. (2020). The occurrence of various types of disinfectant by-products (trihalomethanes, haloacetic acids, haloacetonitrile) in drinking water. In Disinfection By-products in Drinking Water, Butterworth-Heinemann, 371–39.
- Srivastav, A. L., & Kaur, T. (2020). Factors affecting the formation of disinfection by-products in drinking water: human health risk. In Disinfection by-products in drinking water, Butterworth-Heinemann, 433–450.
- Sinha, R., Gupta, A. K., & Ghosal, P. S. (2021). A review on Trihalomethanes and Haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies. Journal of Environmental Chemical Engineering, 9(6), 106511.
- Maziarka, D., Stankiewicz, A., & Jamsheer-Bratkowska, M. (2018). Powłoki niklowe i chromowoniklowe w wyrobach do kontaktu z wodą przeznaczoną do spożycia przez ludzi: wpływ na jakość wody i jej bezpieczeństwo dla zdrowia. (Nickel and chromium-nickel coatings in products for contact with water intended for human consumption: effects on water quality and health safety). Instal.
- Malarski, M., Drzazga, A., Matusiak, M., Strzelczyk, M., & Pająk, P. (2013). Analiza parametrów jakości wody w wybranych sieciach wodociągowych w Polsce pod względem potrzeby jej doczyszczania (Analysis of water quality parameters in selected water supply networks in Poland in terms of the need for water purification). Gaz, Woda i Technika Sanitarna, 4, 151–153.
- Rozporządzenie Ministra Zdrowia z dnia 7 grudnia 2017 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi (Regulation of the Minister of Health of December 7, 2017 on the quality of water intended for human consumption). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002294
- Wu, J., Cao, M., Tong, D., Finkelstein, Z., & Hoek, E. (2021). A critical review of point-of-use drinking water treatment in the United States. NPJ Clean Water, 4(1), 1–25.
- Kudlek, E., Lempart, A., Dudziak, M., & Bujak, M. (2018). Impact of the UV lamp power on the formation of swimming pool water treatment by-products. Architecture, Civil Engineering, Environment, 11(3), 131–138.
- Wisniowska, E., Włodarczyk-Makuła, M., Rak, J., & Tchorzewska-Cieslak, B. (2020). Estimation of potential health and environmental risk associated with the presence of micropollutants in water intakes located in rural areas. Desalination And Water Treatment, 199, 339–351.
- Puszczało, E., Kudlek, E., & Marszałek, A. (2019). Ocena skuteczności pracy filtrów przelewowych (Performance evaluation of overflow filters). Proceedings of EC Opole, 13.
- Puszczalo, E., Marszalek, A., & Kaminska, G. (2021). Application of jug filters for the treatment of model well water. Desalination And Water Treatment, 242, 31–37.
- Barnaby, R., Liefeld, A., Jackson, B. P., Hampton, T. H., & Stanton, B. A. (2017). Effectiveness of table top water pitcher filters to remove arsenic from drinking water. Environmental Research, 158, 610–615.
- Ndé-Tchoupé, A. I., Lufingo, M., Hu, R., Gwenzi, W., Ntwampe, S. K. O., Noubactep, C., & Njau, K. N. (2018). Avoiding the use of exhausted drinking water filters: A filter-clock based on rusting iron. Water, 10(5), 591.
- Barkouch, Y., Flata, K., Melloul, A. A., Khadiri, M. E., & Pineau, A. (2019). Study of filter height effect on removal efficiency of Cd, Cu, Pb and Zn from water by slow sand filtration. Desalination And Water Treatment, 161, 337–342.
- Doré, E., Formal, C., Muhlen, C., Williams, D., Harmon, S., Pham, M., ... & Lytle, D. A. (2021). Effectiveness of point-of-use and pitcher filters at removing lead phosphate nanoparticles from drinking water. Water Research, 201, 117285.
- Levesque, S., Rodriguez, M. J., Serodes, J., Beaulieu, C., & Proulx, F. (2006). Effects of indoor drinking water handling on trihalomethanes and haloacetic acids. Water Research, 40(15), 2921–2930.