References
- Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Rizwanul Fattah, I.M., & Mahlia, T.M.I. (2020). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, 1–17.
- Logan, M., & Visvanathan, C. (2019). Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management and Research, 37(1), 27–39.
- Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38(1), 399–408.
- Breitenmoser, L., Gross, T., Huesch, R., Rau, J., Dhar, H., Kumar, S., Hugi, C., & Wintgens, T. (2019). Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs. Journal of Environmental Management, 236, 396–412.
- Ngwabie, N. M., Wirlen, Y. L., Yinda, G. S., & VanderZaag, A. C. (2019). Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Management, 87, 947–953.
- Ahluwalia, I. J., & Patel, U. (2018). Solid waste management in India: An assessment of resource recovery and environmental impact. Indian Council for Research on International Economic Relations, 356, 1–48.
- Sharma, A., Gupta, A. K., & Ganguly, R. (2018). Impact of open dumping of municipal solid waste on soil properties in mountainous region. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 725–739.
- Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295.
- Rawat, M., & Ramanathan, A. (2011). Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India. Journal of Environmental Protection, 2(4), 399–407.
- Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371(1–3), 1–10.
- Kumar, S., Smith, S., Fowler, G., Velis, C., Kumar, S.J., Arya, S., Rena, Kumar, R., & Cheeseman, C. (2017). Challenges and opportunities associated with waste management in India. Royal Society Open Science, 4(3), 1–11.
- Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 1–9.
- Themelis, N. J., & Ulloa, P. A. (2006). Methane generation in landfills. Renewable Energy, 32(7), 1243–1257.
- Pujara, Y., Pathak, P., Sharma, A., & Govani, J. (2019). Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. Journal of Environmental Management, 248, 1–14.
- Kalyani, K. A., & Pandey, K. K. (2014). Waste to energy status in India: A short review. Renewable and Sustainable Energy Reviews, 31, 113–120.
- Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., & Kothari, R. (2011). An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, 15(9), 4797–4808.
- Nixon, J. D., Dey, P. K., Ghosh, S. K., & Davies, P. A. (2013). Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 59, 215–223.
- Minde, G., Magdum, S., & Kalyanraman, V. (2013). Biogas as a Sustainable Alternative for Current Energy Need of India. Journal of Sustainable Energy and Environment, 4(3), 121–132.
- Unnikrishnan, S., & Singh, A. (2010). Energy recovery in solid waste management through CDM in India and other countries. Resources, Conservation and Recycling, 54(10), 630–640.
- Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086–2094.
- Ossa-Arias, M.D.M., & González-Martínez, S. (2021). Methane Production from the Organic Fraction of Municipal Solid Waste Under Psychrophilic, Mesophilic, and Thermophilic Temperatures at Different Organic Loading Rates. Waste and Biomass Valorization, 1–13.
- Bajpai, P. (2017). Anaerobic Technology in Pulp and Paper Industry.
- Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257.
- Campuzano, R., & González-Martínez, S. (2020). Start-up of dry semi-continuous OFMSW fermentation for methane production. Biomass and Bioenergy, 136, 1–7.
- Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management, 34(12), 2627–2633.
- J. Guendouz, P. Buffière, J. Cacho, M. Carrère, and J. P. Delgenes, Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor, Waste Management, 30(10), 1768–1771.
- Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16.
- Dong, L., Zhenhong, Y., & Yongming, S. (2010). Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WSOFMSW). Bioresource Technology, 101(8), 2722–2728.
- Basinas, P., Rusín, J., & Chamrádová, K. (2021). Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environmental Research, 192, 1–14.
- Fdez-Güelfo, L. A., Álvarez-Gallego, C., Sales, D., & Romero García, L. I. (2012). Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling. Waste Management, 32(3), 382–388.
- Angelidaki, I., Chen, X., Cui, J., Kaparaju, P., & Ellegaard, L. (2006). Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Research, 40(14), 2621–2628.
- Rajagopal, R., Bellavance, D., & Rahaman, M. S. (2017). Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: For North American context. Process Safety and Environmental Protection, 105, 101–108.
- Rocamora, I., Wagland, S. T., Villa, R., Simpson, E. W., Fernández, O., & Bajón-Fernández, Y. (2020). Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresource Technology, 299, 1–11.
- Karthikeyan, O. P., & Visvanathan, C. (2013). Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Reviews in Environmental Science and Biotechnology, 12(3), 257–284.
- Li, J., Jha, A. K., He, J., Ban, Q., Chang, S., & Wang, P. (2011). Assessment of the effects of dry anaerobic codigestion of cow dung with waste water sludge on biogas yield and biodegradability. International Journal of Physical Sciences, 6(15), 3679–3688.
- Debruyn, J., & Hilborn, D. (2007). Anaerobic Digestion Basics. Small, (07), 1–6.
- Laiq Ur Rehman, M., Iqbal, A., Chang, C. C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271.
- Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93, 380–399.
- Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12.
- Al Seadi, T., & Lukehurst, C. (2012). Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, 1–40.
- Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 1–19.
- Panigrahi, S., & Dubey, B. K. (2019). A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 143, 779–797.
- Schirmer, W. N., Jucá, J. F. T., Schuler, A. R. P., Holanda, S., & Jesus, L. L. (2014). Methane production in anaerobic digestion of organic waste from recife (Brazil) landfill: Evaluation in refuse of diferent ages. Brazilian Journal of Chemical Engineering, 31(2), 373–384.
- Motte, J.-C., Trably, E., Escudié, R., Hamelin, J., Steyer, J.-P., Bernet, N., Delgenes, J.-P & Dumas, C. (2013). Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 6, 1–9.
- Naik, N., Tkachenko, E., & Wung, R. (2013). The anaerobic digestion of organic municipal solid waste in California. Chemistry, 234, 1–5.
- Browne, J. D. & Murphy, J. D. (2013). Assessment of the resource associated with biomethane from food waste. Applied Energy, 104, 170–177.
- Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826.
- Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.
- Wang, S., Hawkins, G. L., Kiepper, B. H., & Das, K. C. (2018). Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renewable Energy, 126, 552–562.
- Goel, R., Takutomi, T., & Yasui, H. (2003). Anaerobic digestion of excess activated sludge with ozone pre-treatment. Water Science and Technology, 47(12), 207–214.
- Mishra, P., Thakur, S., Mahapatra, D. M., Wahid, Z. A., Liu, H., & Singh, L. (2018). Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach. International Journal of Hydrogen Energy, 43(5), 2666–2676.
- Liu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., Zhang, Y., & Xing, X. (2018). Bioprocess engineering for biohythane production from low-grade waste bio-mass: technical challenges towards scale up. Current Opinion in Biotechnology, 50, 25–31.
- Liu, C. M., Wachemo, A.C., Tong, H., Shi, S.H., Zhang, L., Yuan, H.R., & Li, X.J. (2018). Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresource Technology, 261, 93–103.
- Khairuddin, N., Manaf, L. A., Halimoon, N., Ghani, W. A. W. A. K., & Hassan, M. A. (2015). High Solid Anaerobic Co-digestion of Household Organic Waste with Cow Manure. Procedia Environmental Sciences, 30, 174–179.
- Zahedi, S., Sales, D., García-Morales, J. L., & Solera, R. (2018). Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste. Biosystems Engineering, 170, 108–116.
- Fernández-Rodríguez, J., Pérez, M., & Romero, L. I. (2013). Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis. Chemical Engineering Journal, 232, 59–64.
- Li, C., Li, J., Pan, L., Zhu, X., Xie, S., Yu, G., Wang, Y., Pan, X., Zhu, G., & Angelidaki, I. (2020). Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification. Journal of Cleaner Production, 265, 1–12.
- Zhu, B., Zhang, R., Gikas, P., Rapport, J., Jenkins, B., & Li, X. (2010). Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresource Technology, 101(16), 6374–6380.
- Campuzano, R., & González-Martínez, S. (2015). Extraction of soluble substances from organic solid municipal waste to increase methane production. Bioresource Technology, 178, 247–253.
- Melts, I., Normak, A., Nurk, L., & Heinsoo, K. (2014). Chemical characteristics of biomass from nature conservation management for methane production. Bioresource Technology, 167, 226–231.
- Xu, F., Wang, Z. W., & Li, Y. (2014). Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresource Technology, 173, 168–176.
- Banks, C. J., Chesshire, M., Heaven, S., & Arnold, R. (2011). Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology, 102(2), 612–620.
- Marañón, E., Negral, L., Suárez-Peña, B., Fernández-Nava, Y., Ormaechea, P., Díaz-Caneja, P., & Castrillón, L. (2021). Evaluation of the Methane Potential and Kinetics of Supermarket Food Waste. Waste and Biomass Valorization, 12(4), 1829–1843.
- Zhang, Y., & Banks, C. J. (2013). Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Management, 33(2), 297–307.
- Zhang, Y., Banks, C. J., & Heaven, S. (2012). Co-digestion of source segregated domestic food waste to improve process stability. Bioresource Technology, 114, 168–178.
- De Vrieze, J., De Lathouwer, L., Verstraete, W., & Boon, N. (2013). High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Research, 47(11), 3732–3741.
- Dai, X., Duan, N., Dong, B., & Dai, L. (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management, 33(2), 308–316.
- Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P., & Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Management, 34(5), 875–885.
- Davidsson, Å., Gruvberger, C., Christensen, T. H., Hansen, T. L., & Jansen, J. la C. (2007). Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management, 27(3), 406–414.
- Du, Y. J., Liu, S. Y., & Shen, S. L. (2009). Evaluation of the performance of contaminant mitigation of Chinese standard Municipal Solid Waste landfill liner systems. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, 929–932.
- Hansen, T. L., Jansen, J. la C., Davidsson, Å., & Christensen, T. H. (2007). Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Management, 27(3), 398–405.
- Forster-Carneiro, T., Pérez, M., & Romero, L. I. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99(15), 6994–7002.
- Hartmann, H., & Ahring, B. K. (2005). Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure. Water Research, 39(8), 1543–1552.
- Bolzonella, D., Innocenti, L., Pavan, P., Traverso, P., & Cecchi, F. (2003). Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: Focusing on the start-up phase. Bioresource Technology, 86(2), 123–129.
- Nayono, E. S., Gallert, C., & Winter, J. (2009). Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Science and Technology, 59(6), 1169–1178.
- Rao, M. S., & Singh, S. P. (2004). Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation. Bioresource Technology, 95(2), 173–185.
- Alibardi, L., & Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147–155.
- Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. (2013). BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33(7), 1626–1632.
- Schievano, A., D'Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., & Adani, F. (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 101(14), 5728–5732.
- Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558.
- Zhang, R., El-Mashad, H., Hartman, K., Wang, F., Liu, G., Choate, C. & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935.
- Fisgativa, H., Tremier, A., & Dabert, P. (2016). Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Management, 50, 264–274.
- Sohoo, I., Ritzkowski, M., Heerenklage, J., & Kuchta, K. (2019). Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan. Renewable and Sustainable Energy Reviews, 135, 1–12.
- Zhai, N., Zhang, T., Yin, D., Yang, G, Wang, X., Ren, G., & Feng, Y. (2015). Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Management, 38(1), 1–6.
- Schievano, A., D'Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., & Adani, F. (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 101(14), 5728–5732.
- Ventura, J. R. S., Lee, J., & Jahng, D. (2014). A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste. Journal of Environmental Sciences (China), 26(6), 1274–1283.
- Wang, J., Huang, Y., & Zhao, X. (2004). Performance and characteristics of an anaerobic baffled reactor. Bioresource Technology, 93(2), 205–208.