Have a personal or library account? Click to login
Role of Thermal Energy Storage Technology in the Decarbonization of Energy Sector Process – Packed Rock Bed Parameters Analysis Cover

Role of Thermal Energy Storage Technology in the Decarbonization of Energy Sector Process – Packed Rock Bed Parameters Analysis

Open Access
|Jan 2023

Abstract

The paper presents the adiabatic installation of compressed gases energy storage. The authors present the results of analyzes for this type of installation due to the selection of thermal storage material. The simulations were carried out for basalt, granite and ceramics (alumina) as well as for porosity value from 0.375 to 0.39 of basalt-filled reservoirs in Thermal Energy Storage (TES) installation. Characteristics of outlet air temperature, air pressure drop amount of energy stored and external heat losses as a time functions during the charging phase are presented. The research indicated that due to the lowest density and average heat capacity of the materials studied, granite has the fastest and most intense physical exit loss from the storage tank which was approximately 1100 W. However, there was no significant effect on air pressure drop depending on the chosen accumulation materials. The effect of rock bed porosity on the pressure drop of flowing air was investigated. For a constant mass flow rate, pressure drop values ranging from 2200 Pa to 6200 Pa were obtained depending on the porosity value.

DOI: https://doi.org/10.2478/acee-2022-0031 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 65 - 74
Submitted on: Mar 15, 2022
Accepted on: May 24, 2022
Published on: Jan 28, 2023
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jakub Ochmann, Michał Jurczyk, Łukasz Bartela, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.