Have a personal or library account? Click to login

Assessment of Possibilities of Spreading of Bioaerosol from Different Technological Objects in Small Sewage Treatment Plants

Open Access
|Aug 2022

References

  1. Kozdrój J., Frączek K., Ropek D. (2019). Assessment of bioaerosols in indoor air of glasshouses located in a botanical garden. Building and Environment, 166, 106436. Doi.org/10.1016/j.buildenv.2019.106436.
  2. Ruiz-Gil T., Acuna J.J., Fujiyoshi S., Tanaka D., Noda J., Maruyama F., Jorquera M.A. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156. doi.org/10.1016/j.envint.2020.106156
  3. Brandl H., Fricker-Feer C., Ziegler D., Mandal J., Stephan R., Lehner A. (2013). Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility. J. Dairy Sci. 97, 240–246. http://dx.doi.org/ 10.3168/jds.2013-7028
  4. Lee B. U. (2011). Life comes from air: A short review on bioaerosol control. Aerosol Air Qual. Res., 11, 921–927. Doi: 10.4209/aaqr.2011.06.0081
  5. Wijnand E., H., Dick C. D., Green B.J. (2012). Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 14, 334–339. Doi: :10.1039/c2em10717a.
  6. Arora S., Nag A., Sethi J., Rajvanshi J., Saxena S., Shrivastava S. K., Gupta A.B. (2020). Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Science & Technology, 82(12), 10717a. Doi: 10.2166/wst.2020.540
  7. Li X., Chen H., Yao M. (2020). Microbial emission levels and diversities from different land use types. Environment International, 143, 105988. Doi.org/10.1016/j.envint.2020.105988
  8. Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. (2020). Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 7, 511−516. Doi.org/10.1021/acs.estlett.0c00357
  9. Sharif S., Ikram A., Khurshid A., Salman M., Mehmood N., Arshad Y., Ahmed J., Safdar R.M., Rehman L., Mujtaba G., Hussain J., Ali J., Angez M., Alam M.M., Akthar R., Malik M.W., Baig M.Z.I., Rana M.S., Usman M., Ali M.Q., Ahad A., Badar N., Umair M., TamimS., Ashraf A., Tahir F., Ali N. (2021). Detection of SARs-CoV-2 in wastewater using the existing environmental surveillance network: A potential supplementary system for monitoring COVID-19 transmission. PLOS ONE, 16(6), e0249568. Doi.org/10.1371/journal.pone.0249568
  10. Li J., Zhou L., Zhang X., Xu C., Dong L., Yao M. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404–412. Doi.org/10.1016/j.atmosenv.2015.06.030
  11. Polish Standards (PN-89 / Z-04111 / 01: 1989
  12. Polish Standards (PN-89 / Z-04111 /02: 1989
  13. Polish Standards (PN-89 / Z-04111 /03: 1989
  14. Grisoli, P.; Rodolfi, M.; Villani, S.; Grignani, E.; Cottica, D.; Berri, A.; Picco, A.; Dacarro, C. (2009). Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environ. Res., 109, 135–142. Doi:10.1016/j.envres.2008.11.001
  15. Grisoli, P., Albertoni M, Rodolf M. (2019). Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. Appl. Sci., 9, 1101. Doi:10.3390/app9061101
  16. Haas D., Kriso A., Fritz T., Galler H., Habib J., Ilieva M., Kropsch M., Ofner-Kopeinig P., Stonitsch M., Strasser A., Zentner E., Reinthaler F.F. (2020). Background Concentrations of Cultivable, Mesophilic Bacteria and Dust Particles in the Air in Urban, Rural and Mountain Regions. Int. J. Environ. Res. Public Health, 17, 9572. Doi:10.3390/ijerph17249572
  17. Ramesh C., Vinithkumar N.V., Kirubagaran R., Venil C.K., Dufossé L. (2019). Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. Microorganisms, 7, 186. Doi:10.3390/microorganisms7070186
  18. Duan H., Chai T., Liu J., Zhang X., Qi C., Jing G., Wang Y., Cai Y., Miao Z., Yao M., Schlenker G. (2009). Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environmental Research., 109, 511–517. Doi:10.1016/j.envres.2009.02.014
  19. Ginn O, Rocha-Melogno L., Bivins A., Lowry S., Cardelino M., Nichols D., Tripathi S., Soria F., Andrade M., Bergin M., Deshusses M.A., Brown J. (2021). Detection and quantification of enteric pathogens in aerosols near uncontained fecal waste streams in cities with poor sanitation. medRxiv. Doi: https://doi.org/10.1101/2021.02.14.21251650
  20. Lin T-H., Chiang C-F., Lin S-T., Tsai C-T. (2016). Effects of Small-Size Suspended Solids on the Emission of Escherichia coli from the Aeration Process of Wastewater Treatment. Aerosol and Air Quality Research, 16, 2208–2215. Doi: 10.4209/aaqr.2015.04.0232
  21. Nag R., Monahan C., Whyteb P., Markey B.K., O’Flaherty V., Bolton D., Fenton O., Richards K.G., Cumminsa E. (2021). Risk assessment of Escherichia coli in bioaerosols generated following land application of farmyard slurry. Science of the Total Environment, 791, 148189. Doi.org/10.1016/j.scitotenv.2021.148189
  22. Michałkiewicz M., Kruszelnicka I., Ginter-Kramarczyk D., Mizerna-Nowotna P. (2016). Uciążliwość odorowa i mikrobiologiczna oczyszczalni ścieków – studium przypadku (Odor and microbiological nuisance in a sewage treatment plant – a case study). Ochrona Środowiska, 38(3), 41–48. http://www.os.not.pl/docs/czasopismo/2016/3-2016/Michalkiewicz_3-2016.pdf
  23. Breza-Boruta B. (2012). Bioaerosols of the municipal waste landfill site as a source of microbiological air pollution and health hazard. Ecol Chem Eng A., 19(8), 851–862. Doi: 10.2428/ecea.2012.19(08)083
  24. Breza-Boruta B. (2010). Ocena mikrobiologicznego zanieczyszczenia powietrza na terenie oczyszczalni ścieków (Assessment of microbiological air pollution in the sewage treatment plant). Woda-Środowisko-Obszary Wiejskie, 10(3), 49–57.
  25. Li P., Li L.., Yang K., Zheng T., Liu J., Wang Y. (2021). Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. Environmental Research, 195, 110798. Doi.org/10.1016/j.envres.2021.110798
  26. Xu G., Han Y., Li L., Liu J. (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. J Environ Sci, 74, 71–78. Doi: 10.1016/j.jes.2018.02.007
  27. Franchitti E., Pascale E., Fea E., Anedda E., Traversi D. (2020). Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in OrganicWaste Treatment. Atmosphere, 11(5), 452. Doi.org/10.3390/atmos11050452
DOI: https://doi.org/10.2478/acee-2022-0025 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 177 - 186
Submitted on: Mar 28, 2022
Accepted on: May 9, 2022
Published on: Aug 9, 2022
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ewa ZABŁOCKA-GODLEWSKA, Wioletta PRZYSTAŚ, Magdalena ŻAK, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.