Kozdrój J., Frączek K., Ropek D. (2019). Assessment of bioaerosols in indoor air of glasshouses located in a botanical garden. Building and Environment, 166, 106436. Doi.org/10.1016/j.buildenv.2019.106436.
Brandl H., Fricker-Feer C., Ziegler D., Mandal J., Stephan R., Lehner A. (2013). Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility. J. Dairy Sci. 97, 240–246. http://dx.doi.org/ 10.3168/jds.2013-7028
Wijnand E., H., Dick C. D., Green B.J. (2012). Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 14, 334–339. Doi: :10.1039/c2em10717a.
Arora S., Nag A., Sethi J., Rajvanshi J., Saxena S., Shrivastava S. K., Gupta A.B. (2020). Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Science & Technology, 82(12), 10717a. Doi: 10.2166/wst.2020.540
Li X., Chen H., Yao M. (2020). Microbial emission levels and diversities from different land use types. Environment International, 143, 105988. Doi.org/10.1016/j.envint.2020.105988
Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. (2020). Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 7, 511−516. Doi.org/10.1021/acs.estlett.0c00357
Sharif S., Ikram A., Khurshid A., Salman M., Mehmood N., Arshad Y., Ahmed J., Safdar R.M., Rehman L., Mujtaba G., Hussain J., Ali J., Angez M., Alam M.M., Akthar R., Malik M.W., Baig M.Z.I., Rana M.S., Usman M., Ali M.Q., Ahad A., Badar N., Umair M., TamimS., Ashraf A., Tahir F., Ali N. (2021). Detection of SARs-CoV-2 in wastewater using the existing environmental surveillance network: A potential supplementary system for monitoring COVID-19 transmission. PLOS ONE, 16(6), e0249568. Doi.org/10.1371/journal.pone.0249568
Li J., Zhou L., Zhang X., Xu C., Dong L., Yao M. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404–412. Doi.org/10.1016/j.atmosenv.2015.06.030
Grisoli, P.; Rodolfi, M.; Villani, S.; Grignani, E.; Cottica, D.; Berri, A.; Picco, A.; Dacarro, C. (2009). Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environ. Res., 109, 135–142. Doi:10.1016/j.envres.2008.11.001
Grisoli, P., Albertoni M, Rodolf M. (2019). Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. Appl. Sci., 9, 1101. Doi:10.3390/app9061101
Haas D., Kriso A., Fritz T., Galler H., Habib J., Ilieva M., Kropsch M., Ofner-Kopeinig P., Stonitsch M., Strasser A., Zentner E., Reinthaler F.F. (2020). Background Concentrations of Cultivable, Mesophilic Bacteria and Dust Particles in the Air in Urban, Rural and Mountain Regions. Int. J. Environ. Res. Public Health, 17, 9572. Doi:10.3390/ijerph17249572
Ramesh C., Vinithkumar N.V., Kirubagaran R., Venil C.K., Dufossé L. (2019). Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. Microorganisms, 7, 186. Doi:10.3390/microorganisms7070186
Duan H., Chai T., Liu J., Zhang X., Qi C., Jing G., Wang Y., Cai Y., Miao Z., Yao M., Schlenker G. (2009). Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environmental Research., 109, 511–517. Doi:10.1016/j.envres.2009.02.014
Ginn O, Rocha-Melogno L., Bivins A., Lowry S., Cardelino M., Nichols D., Tripathi S., Soria F., Andrade M., Bergin M., Deshusses M.A., Brown J. (2021). Detection and quantification of enteric pathogens in aerosols near uncontained fecal waste streams in cities with poor sanitation. medRxiv. Doi: https://doi.org/10.1101/2021.02.14.21251650
Lin T-H., Chiang C-F., Lin S-T., Tsai C-T. (2016). Effects of Small-Size Suspended Solids on the Emission of Escherichia coli from the Aeration Process of Wastewater Treatment. Aerosol and Air Quality Research, 16, 2208–2215. Doi: 10.4209/aaqr.2015.04.0232
Nag R., Monahan C., Whyteb P., Markey B.K., O’Flaherty V., Bolton D., Fenton O., Richards K.G., Cumminsa E. (2021). Risk assessment of Escherichia coli in bioaerosols generated following land application of farmyard slurry. Science of the Total Environment, 791, 148189. Doi.org/10.1016/j.scitotenv.2021.148189
Michałkiewicz M., Kruszelnicka I., Ginter-Kramarczyk D., Mizerna-Nowotna P. (2016). Uciążliwość odorowa i mikrobiologiczna oczyszczalni ścieków – studium przypadku (Odor and microbiological nuisance in a sewage treatment plant – a case study). Ochrona Środowiska, 38(3), 41–48. http://www.os.not.pl/docs/czasopismo/2016/3-2016/Michalkiewicz_3-2016.pdf
Breza-Boruta B. (2012). Bioaerosols of the municipal waste landfill site as a source of microbiological air pollution and health hazard. Ecol Chem Eng A., 19(8), 851–862. Doi: 10.2428/ecea.2012.19(08)083
Breza-Boruta B. (2010). Ocena mikrobiologicznego zanieczyszczenia powietrza na terenie oczyszczalni ścieków (Assessment of microbiological air pollution in the sewage treatment plant). Woda-Środowisko-Obszary Wiejskie, 10(3), 49–57.
Li P., Li L.., Yang K., Zheng T., Liu J., Wang Y. (2021). Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. Environmental Research, 195, 110798. Doi.org/10.1016/j.envres.2021.110798
Xu G., Han Y., Li L., Liu J. (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. J Environ Sci, 74, 71–78. Doi: 10.1016/j.jes.2018.02.007
Franchitti E., Pascale E., Fea E., Anedda E., Traversi D. (2020). Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in OrganicWaste Treatment. Atmosphere, 11(5), 452. Doi.org/10.3390/atmos11050452