Have a personal or library account? Click to login
Increased transcript expression levels of DNA methyltransferases type 1 and 3A during cardiac muscle long-term cell culture Cover

Increased transcript expression levels of DNA methyltransferases type 1 and 3A during cardiac muscle long-term cell culture

Open Access
|Mar 2021

References

  1. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102; DOI:10.1126/science.1164680.
  2. Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4; DOI:10.1038/nm1618.
  3. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu T-D, Guerquin-Kern J-L, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6; DOI:10.1038/nature11682.
  4. Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S, Pu W, Tian X, Li Y, Liu Q, Yu W, Zhang L, Liu X, Liu K, Tang J, Zhang H, Cai D, Ralf AH, Xu Q, Lui KO, Zhou B. Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases. Circulation. 2018;138:793–805; DOI:10.1161/CIRCULATIONAHA.118.034250.
  5. Lerman DA, Diaz M, Peault B. Changes in coexpression of pericytes and endogenous cardiac progenitor cells from heart development to disease state. Eur Heart J. 2018;39:1850; DOI:10.1093/eurheartj/ehy565.P1850.
  6. Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286:481–6.
  7. Costa-Reis P, Sullivan KE. Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep. 2013;15:369; DOI:10.1007/s11926-013-0369-4.
  8. Schneider E, Pliushch G, Hajj N El, Galetzka D, Puhl A, Schorsch M, Frauenknecht K, Riepert T, Tresch A, Müller AM, Coerdt W, Zechner U, Haaf T. Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res. 2010;38:3880–90; DOI:10.1093/nar/gkq126.
  9. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20; DOI:10.1038/nrg3354.
  10. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.
  11. Jeong M, Goodell MA. New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Exp Hematol. 2014;42:609–17; DOI:10.1016/j.exphem.2014.04.008.
  12. Zhang Y, Zhao M, Sawalha AH, Richardson B. Impaired DNA methylation and its mechanisms in CD4+T cells of systemic lupus erythematosus. J Autoimmun. 2013;41:92–9; DOI:10.1016/j.jaut.2013.01.005.
  13. Suzuki MM, Bird A. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76; DOI:10.1038/nrg2341.
  14. Jin B, Ernst J, Tiedemann RL, Xu H, Sureshchandra S, Kellis M, Dalton S, Liu C, Choi J-H, Robertson KD. Linking DNA Methyltransferases to Epigenetic Marks and Nucleosome Structure Genome-wide in Human Tumor Cells. Cell Rep. 2012;2:1411–24; DOI:10.1016/j.celrep.2012.10.017.
  15. Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Würch A, Bönisch U, Günther S, Backofen R, Fleischmann BK, Schübeler D, Hein L. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5; DOI:10.1038/ncomms6288.
  16. Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett MR, Foo RSY. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124:2411–22; DOI:10.1161/CIRCULATIONAHA.111.040071.
  17. Tian L, Wu D, Dasgupta A, Chen KH, Mewburn J, Potus F, Lima PDA, Hong Z, Zhao YY, Hindmarch CCT, Kutty S, Provencher S, Bonnet S, Sutendra G, Archer SL. Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension. Circ Res. 2020;126:1723–45; DOI:10.1161/CIRCRESAHA.120.316443.
  18. Nührenberg TG, Hammann N, Schnick T, Preißl S, Witten A, Stoll M, Gilsbach R, Neumann FJ, Hein L. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS One. 2015;10; DOI:10.1371/journal.pone.0131019.
  19. Madsen A, Höppner G, Krause J, Hirt MN, Laufer SD, Schweizer M, Tan WLW, Mosqueira D, Anene-Nzelu CG, Lim I, Foo RSY, Eschenhagen T, Stenzig J. An important role for DNMT3a-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation. 2020:1562–78; DOI:10.1161/CIRCULATIONAHA.119.044444.
  20. Naito M, Mori M, Inagawa M, Miyata K, Hashimoto N, Tanaka S, Asahara H. Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLOS Genet. 2016;12:e1006167; DOI:10.1371/journal.pgen.1006167.
Language: English
Page range: 27 - 32
Submitted on: Feb 5, 2021
Accepted on: Mar 3, 2021
Published on: Mar 30, 2021
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Mariusz J. Nawrocki, Rut Bryl, Sandra Kałużna, Katarzyna Stefańska, Bogumiła Stelmach, Marek Jemielity, Bartłomiej Perek, Dorota Bukowska, Paul Mozdziak, James N. Petitte, Bartosz Kempisty, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.