Have a personal or library account? Click to login
Udp-Glycosyltransferases of Plant Hormones Cover
Open Access
|Oct 2014

References

  1. [1] Bajguz A, Piotrowska A. Conjugates of auxin and cytokinin. Phytochem 2009; 70: 957-969.10.1016/j.phytochem.2009.05.006
  2. [2] Bowles D, Isayenkova J, Lim E-K, Poppenberger B. Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 2005; 8: 254-263.10.1016/j.pbi.2005.03.007
  3. [3] Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 2003; 328: 307-317.10.1016/S0022-2836(03)00307-3
  4. [4] Dean JV, Delaney SP. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant 2008; 132: 417-425.10.1111/j.1399-3054.2007.01041.x18248508
  5. [5] Fedejko B, Mazerska Z. UDP-glycosyltransferases, ensoplasmic reticulum proteins - structure and mechanism of activity (in Polish). Post Biochem 2011; 57: 41-48.
  6. [6] Halkjær Hansen E, Osmani Sa, Kristensen C, Lindberg Møller B, Hansen J. Substrate specificities of family 1 UGT gained by domain swapping. Phytochem 2009; 70: 473-482.10.1016/j.phytochem.2009.01.01319261311
  7. [7] Hou B, Lim E-K, Higgins GS, Bowles DJ. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 2004; 279: 47822-47832.10.1074/jbc.M40956920015342621
  8. [8] Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 2011; 11: 51.10.1186/1471-2229-11-51307389821429230
  9. [9] Iyer M, Slovin JP, Epstein E, Cohen JD. Transgenic tomato plants with a modified ability to synthesize indole-3-acetyl-β-1-O-D-glucose. J Plant Growth Regul 2005; 24: 142-152.10.1007/s00344-004-0007-5
  10. [10] Jackson RG, Lim E-K, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 2001; 276: 4350-4356.10.1074/jbc.M00618520011042207
  11. [11] Jackson RG, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles DJ. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J 2002; 32: 573-583.10.1046/j.1365-313X.2002.01445.x
  12. [12] Jakubowska A. Synthesis and hydrolysis of phytohormone conjugates in control of active hormone levels (in Polish). Post Biol Kom 2003; 30: 563-585.
  13. [13] Jakubowska A. Mechanisms of IAA level control in plants (in Polish). Wydawnictwo UMK Toruń, 2004.
  14. [14] Jakubowska A, Kowalczyk S. The auxin conjugat e1-O-indole-3-acetyl-β-D-glucose is synthesized in immature legume seeds by IAGlc synthase and may be used for modification of some high molecular weight compounds. J Exp Bot 2004; 55: 791-801.10.1093/jxb/erh08614990619
  15. [15] Kowalczyk S, Jakubowska A, Bandurski RS. 1-Naphtalene acetic acid induces indole-3-ylacetylglucose synthase in Zea mays seedling tissue. Plant Growth Regul 2002; 38: 127-134.10.1023/A:1021232511258
  16. [16] Lim E-K, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 2002; 277: 586-592.10.1074/jbc.M10928720011641410
  17. [17] Lim E-K, Doucet CJ, Hou B, Jackson RG, Abrams SR, Bowles DJ. Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrah: Assym 2005; 16: 143-147.10.1016/j.tetasy.2004.11.062
  18. [18] Lorenc - Kukuła K, Korobczak A, Aksamit - Stachurska A, Kostyń K, Łukaszewicz M, Szopa J. Glucosyltransferase: the gene arrangement and enzyme function. Cell Mol Biol Lett 2004; 9: 935-946.
  19. [19] López-Carbonell M, Gabasa M, Jáuregui O. Enhanced det erminat ion of abscisic acid (ABA) and abscisic acid glucose ester (ABA-GE) in Citrus albidus plants by liquid chromatography - mass spectrometry in tandem mode. Plant Physiol Biochem 2009; 47: 256-261.10.1016/j.plaphy.2008.12.01619167901
  20. [20] Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 2011; 62: 1757-1773.10.1093/jxb/erq41221307383
  21. [21] Ludwig-Müller J, Walz A, Slovin JP, Epstein E, Cohen JD, Dong W, Town CD. Overexpression of maize IAGLU in Arabidopsis thaliana alters plant growth and sensitivity to IAA but not IBA and 2,4- D. J Plant Growth Regul 2005; 24: 127-141.10.1007/s00344-004-0006-6
  22. [22] Marciniak K, Kęsy J, Tretyn A, Kopcewicz J. Gibberellins - structure, biosynthesis and inactivation in plants (in Polish). Post Biochem 2012; 58: 14-25.
  23. [23] Meek L, Martin RC, Shan X, Karplus PA, Mok DWS, Mok MC. Isolation of legume glycosyltransferases and active site mapping of the Phaseolus lunatus zeatin O-glucosyltransferase ZOG1. J Plant Growth Regul 2008; 27: 192-201.10.1007/s00344-008-9045-8
  24. [24] Mimura A, Sumioka H, Matsunami K, Otsuka H. Conjugat es of an abscisic acid der ivat ive and phenolic glucosides, and a new sesquiterpene glucoside from Lindera strychnifolia. J Nat Med 2010; 64: 153-160.10.1007/s11418-010-0391-z20119718
  25. [25] Mok MC, Martin Rc, Dobrev PI, Vanková R, Shing Ho P, Yonekura-Sakakibara K, Sakakibara H, Mok DWS. Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 2005; 137: 1057-1066. 10.1104/pp.104.057174106540615728338
  26. [26] Osmani SA, Bak S, Lindberg Møller B. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochem 2009; 70: 325-347.10.1016/j.phytochem.2008.12.009
  27. [27] Ostrowski M, Jakubowska A. Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum L.) J Plant Physiol 2008; 165: 564-569.10.1016/j.jplph.2007.07.011
  28. [28] Pastor V, Vincent C, Cerezo M, Mauch-Mani B, Dean J, Flors V. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques. Plant Physiol Biochem 2012; 53: 19-26.10.1016/j.plaphy.2012.01.003
  29. [29] Paquette S, Lindberg Møller B, Bak S. On the origin of family 1 plant glycosyltransferases. Phytochem 2003; 62: 399-413.10.1016/S0031-9422(02)00558-7
  30. [30] Pineda Rodo A, Brugière N, Vankova R, Malbeck J, Olson JM, Haines SC, Martin RC, Habben JE, Mok DWS, Mok MC. Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot 2008; 59: 2673-2686.10.1093/jxb/ern137248647218515825
  31. [31] Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochem 2011; 72: 2097-2112.10.1016/j.phytochem.2011.08.01221880337
  32. [32] Poppenberger B, Fujioka S, Soeno K, George Gl, Vaistij Fe, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 2005; 102: 15253-15258.10.1073/pnas.0504279102125769916214889
  33. [33] Priest DM, Jackson RG, Ashford DA, Abrams SR, Bowles DJ. The use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a UDP-glycosyltransferase of Arabidopsis thaliana.FEBS Lett 2005; 579: 4454-4458.10.1016/j.febslet.2005.06.08416083885
  34. [34] Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 2006; 46: 492-502.10.1111/j.1365-313X.2006.02701.x16623908
  35. [35] Sado P-E, Tessier D, Vasseur M, Elmorjani K, Guillon F, Saulnier L. Integrating genes and phenotype: a wheat - Arabidopsis-rice glycosyltransferase database for candidate gene analyses. Funct Integr Genom 2009; 9: 43-58.10.1007/s10142-008-0100-019005709
  36. [36] Seto Y, Hamada S, Matsuura H, Matsushige M, Satou C, Takahashi K, Masuta C, Ito H, Matsui H, Nabeta K. Purification and cDNA cloning of a wound inducible glucosyltransferase active toward 12-hydroxy jasmonic acid. Phytochem 2009; 70: 370-379.10.1016/j.phytochem.2009.01.00419233441
  37. [37] Seto Y, Hamada S, Ito H, Masuta C, Matsui H, Nabeta K, Matsuura H. Tobacco salicylic acid glucosyltransferase id active toward tuberonic acid (12-hydroxyjasmonic acid) and is induced by mechanical wounding stress. Biosci Biotech Biochem 2011; 75: 2316-2320.10.1271/bbb.11045422146717
  38. [38] Soeno K, Fujioka S, Hiranuma S, Seto H, Yoshida S. Metabolic conversion of castasterone and brassinolide into their glucosides in higher plants. J Plant Growth Regul 2006; 25: 195-202.10.1007/s00344-006-0005-x
  39. [39] Song JT. Biochemical char act er izat ion of an Arabidopsis glucosyltransferase with high activity toward jasmonic acid. J Plant Biol 2005; 48: 422-428.10.1007/BF03030584
  40. [40] Song JT. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol Cell 2006; 22: 233-238.
  41. [41] Song JT, Koo YJ, Seo HS, Kim MC, Choi YD, Kim JH. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochem 2008; 69: 1128-1134.10.1016/j.phytochem.2007.12.01018226820
  42. [42] Song JT, Koo YJ, Park J-B, Seo YJ, Cho Y-J, Seo HS, Choi YD. The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses. Mol Cell 2009; 28: 105-109.10.1007/s10059-009-0108-x19669626
  43. [43] Starzyńska E, Kowalczyk S. Novel 1-O-indole-3-acetyl-β-D-glucose-dependent acyltransferase transferring indoleacetyl moiety to some mono-, di, and oligosaccharides. Acta Physiol Plant 2012; 34: 53-63.10.1007/s11738-011-0804-y
  44. [44] Suzuki H, Hayase H, Nakayama A, Yamaguchi I, Asami T, Nakajima M. Identification and characterization of an Ipomoea il glucosyltransferase which metabolizes some phytohormones. Biochem Biophys Res Commun 2007; 361: 980-986 10.1016/j.bbrc.2007.07.14717692286
  45. [45] Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, Van De Cotte B, De Clerq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inzé D, Van Breusegem F. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 2010; 22: 2660-2679.10.1105/tpc.109.071316294717020798329
  46. [46] Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M. Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 2009; 57: 463-472.10.1111/j.1365-313X.2008.03697.x18826428
  47. [47] Veach YK, Martin RC, Mok DWS, Malbeck J, Vankova R, Mok MC. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 2003; 131: 1374-1380.10.1104/pp.01721016689612644686
  48. [48] Wang J, Hou B. Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front Biol Chin 2009; 4: 39-46.10.1007/s11515-008-0111-1
  49. [49] Wang J, Ma X-M, Kojima M, Sakakibara H, Hou B-K. N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 2011; 52: 2200-2213.10.1093/pcp/pcr15222051886
  50. [50] Wang X. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 2009; 583: 3303-3309.10.1016/j.febslet.2009.09.04219796637
  51. [51] Wilmowicz E, Frankowski K, Sidłowska M, Kućko A, Kęsy J, Gąsiorowski A, Glazińska P, Kopcewicz J. Jasmonate biosynthesis - the latest discoveries (in Polish) Post Biochem 2012; 58: 26-33.
  52. [52] Xu Z-J, Nakajima M, Suzuki Y, Yamaguchi I. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 2002; 129: 1285-1295. 10.1104/pp.00178416652212114582
Language: English
Page range: 43 - 60
Published on: Oct 15, 2014
Published by: Foundation for Cell Biology and Molecular Biology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Maciej Ostrowski, Anna Jakubowska, published by Foundation for Cell Biology and Molecular Biology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.