Have a personal or library account? Click to login

Effect of Light-Emitting Diodes (LEDs) on Some Physical and Bioactive Compounds of ‘Iceberg’ Lettuce (Lactuca Sativa L.)

Open Access
|Jul 2021

References

  1. 1. Akoyunoglou G, Anni H (1984) Blue light effect on chloroplast development in higher plants. In Blue light effects in biological systems. Springer, Berlin, Heidelberg.10.1007/978-3-642-69767-8_44
  2. 2. Amoozgar A, Mohammadi A, Sabzalian MR (2017) Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 55:85–95. doi: 10.1007/s11099-016-0216-810.1007/s11099-016-0216-8
  3. 3. Balegh S, Biddulph O (1970) The Photosynthetic Action Spectrum of the Bean Plant. Plant Physiol 46:1–5.10.1104/pp.46.1.139652316657397
  4. 4. Blaauw OH, Blaauw-Jansen G (1970) The phototropic responses of Avena coleoptiles. Acta Botanica Neerlandica 19:755–763.10.1111/j.1438-8677.1970.tb00177.x
  5. 5. Brown C s., Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Journal of the American Society for Horticultural Science 120:808–813. doi: 10.1016/j.envexpbot.2009.06.01110.1016/j.envexpbot.2009.06.011
  6. 6. Bula RJ, Morrow RC, Tibbitts TW, et al (1991) Light-emitting Diodes as a Radiation Source for Plants. HortScience 26:203–205. doi: 10.1007/s00442005062410.1007/s00442005062428308474
  7. 7. Chen X li, Guo W zhong, Xue X zhang, et al (2014) Growth and quality responses of “Green Oak Leaf” lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae 172:168–175. doi: 10.1016/j.scienta.2014.04.00910.1016/j.scienta.2014.04.009
  8. 8. Chen X li, Xue X zhang, Guo W zhong, et al (2016) Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Scientia Horticulturae 200:111–118. doi: 10.1016/j.scienta.2016.01.00710.1016/j.scienta.2016.01.007
  9. 9. Cosgrove DJ, Green PB (1981) Rapid Suppression of Growth by Blue Light. Plant Physiology 67:584–590. doi: 10.1104/pp.68.6.144710.1104/pp.68.6.144742611916662124
  10. 10. Deitzer GF, Hayes R, Jabben M (1979) Kinetics and Time Dependence of the Effect of Far Red Light on the Photoperiodic Induction of Flowering in Wintex Barley. Plant Physiology 64:1015–1021. doi: 10.1104/pp.64.6.101510.1104/pp.64.6.101554318316661084
  11. 11. Fan X, Zang J, Xu Z, et al (2013) Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursor. Acta physiologiae plantarum 35:2721–2726. doi: 10.1007/s11738-013-1304-z10.1007/s11738-013-1304-z
  12. 12. Giliberto L, Perrotta G, Pallara P, et al (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology 137:199–208. doi: 10.1104/pp.104.05198710.1104/pp.104.05198754885115618424
  13. 13. Hoenecke ME, Bula RJ, Tibbitts TW (1992) Importance of “blue” photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27:427–430. doi: 10.21273/hortsci.27.5.42710.21273/HORTSCI.27.5.427
  14. 14. Hogewoning SW, Trouwborst G, Maljaars H, et al (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of experimental botany 61:3107–3117. doi: 10.1093/jxb/erq13210.1093/jxb/erq132289214920504875
  15. 15. Kamiya A, Ikegami I, Hase E (1981) Effects of Light on Chlorophyll Formation in Cultured Tobacco Cells I. Chlorophyll Accumulation and Phototransformation of Protochlorophyll ( ide ) in Callus Cells under Blue and Red light. Plant and cell physiology 22:1385–1396.10.1093/oxfordjournals.pcp.a076291
  16. 16. Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 39:1617–1622. doi: 10.21273/hortsci.39.7.161710.21273/HORTSCI.39.7.1617
  17. 17. Klemo M, Biti B (2018) Nitrate Concentration in Plant Products of Albanian Market. Knowledge International Journal 28:1289–1294. doi: 10.35120/kij28041289m10.35120/kij28041289M
  18. 18. Kurilčik A, Miklušytė-čanova R, Dapkūnienė S, et al (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Central European Journal of Biology 3:161–167. doi: 10.2478/s11535-008-0006-910.2478/s11535-008-0006-9
  19. 19. Lee SH, Tewari RK, Hahn EJ, Paek KY (2007) Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets. Plant Cell, Tissue and Organ Culture 90:141–151. doi: 10.1007/s11240-006-9191-210.1007/s11240-006-9191-2
  20. 20. Leong TY, Anderson JM (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynthesis research 5:105–115.10.1007/BF0002852424458599
  21. 21. Lillo C (1994) Light regulation of nitrate reductase in green leaves of higher plants. Physiologia Plantarum 90:616–620. doi: 10.1111/j.1399-3054.1994.tb08822.x10.1111/j.1399-3054.1994.tb08822.x
  22. 22. Lillo C, Appenroth KJ (2001) Light regulation of nitrate reductase in higher plants: Which photoreceptors are involved? Plant Biology 3:455–465. doi: 10.1055/s-2001-1773210.1055/s-2001-17732
  23. 23. Lin KH, Huang MY, Huang WD, et al (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150:86–91. doi:https://doi.org/10.1016/j.scienta.2012.10.00210.1016/j.scienta.2012.10.002
  24. 24. Lopez-Juez E, Hughes MJ (1995) Effect of blue light and red light on the control of chloroplast acclimation of lightgrown pea leaves to increased fluence rates. Photochemistry and photobiology. 61:106–111.10.1111/j.1751-1097.1995.tb09250.x
  25. 25. Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43:1951–1956. doi: 10.21273/hortsci.43.7.195110.21273/HORTSCI.43.7.1951
  26. 26. Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Science and Plant Nutrition 53:459–465. doi: 10.1111/j.1747-0765.2007.00150.x10.1111/j.1747-0765.2007.00150.x
  27. 27. McAllister F and (1937) Wavelengths of radiation in the visible spectrum promoting the germination of lightsensitive lettuce seed. Smithsonian Inst. Publs., MIisc. Collections 96:1–8.
  28. 28. Morgan DC, Smith H (1979) A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation. Planta 145:253–258.10.1007/BF0045444924317731
  29. 29. Naznin MT, Lefsrud M, Gravel V, Azad MOK (2019) Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, Spinach, Kale, Basil, and sweet pepper in a controlled environment. Plants. doi: 10.3390/plants804009310.3390/plants8040093652437130965584
  30. 30. Pandey SK, Singh H (2011) A Simple, Cost-Effective Method for Leaf Area Estimation. Journal of Botany 2011:1–6. doi: 10.1155/2011/65824010.1155/2011/658240
  31. 31. Pinho P, Jokinen K, Halonen L (2012) Horticultural lighting - Present and future challenges. Lighting Research and Technology 44:427–437. doi: 10.1177/147715351142498610.1177/1477153511424986
  32. 32. Poudel PR, Kataoka I, Ryosuke M (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant cell, tissue and organ culture 92:147–153. doi: 10.1007/s11240-007-9317-110.1007/s11240-007-9317-1
  33. 33. Sæbø A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture 41:177–185.10.1007/BF00051588
  34. 34. Santamaria P (2006) Nitrate in vegetables: Toxicity, content, intake and EC regulation. Journal of the Science of Food and Agriculture 86:10–17. doi: 10.1002/jsfa.235110.1002/jsfa.2351
  35. 35. Schwartz A, Zeiger E (1984) Metabolic energy for stomatal opening: Roles of photophosphorylation and oxidative phosphorylation. Planta 161:129–136. doi: https://doi.org/10.1007/BF0039547210.1007/BF0039547224253600
  36. 36. Senger H (1984) Blue light effects in biological systems. Springer-Verlag, Berlin10.1007/978-3-642-69767-8
  37. 37. Sharkey TD, Raschke K (1981) Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L.. Plant Physiology 68:1170–1174. doi: 10.1104/pp.68.5.117010.1104/pp.68.5.117042606316662069
  38. 38. Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. Research Journal of Chemical Sciences Res. J. Chem. Sci 4:63–69.
  39. 39. Takemiya A, Takahashi Y, Shimazaki K (2007) Leaf temperature reduction by blue light-dependent stomatal opening. Cryobiology and Cryotechnology 53:1–5.
  40. 40. Walters RG (2005) Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany 56:435–447. doi: 10.1093/jxb/eri06010.1093/jxb/eri06015642715
  41. 41. Yanagi T, Okamoto K, Takita S (1996) Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Horticulturae 440:117–122. doi: 10.17660/ActaHortic.1996.440.2110.17660/ActaHortic.1996.440.2111541565
  42. 42. Yorio NC, Goins GD, Kagie HR, et al (2001) Improving Spinach, Radish, and peak height), which closely matches a peak absorbance of chlorophyll (McCree, 1972). Lettuce Growth under Red Light- Although red LEDs have great potential for use as a light source to drive photosynthe- emitting Diodes (LED. HortScience 36:380–383.10.21273/HORTSCI.36.2.380
  43. 43. Zeiger E (1984) Blue light and stomatal function. In Blue light effects in biological systems. Springer, Berlin, Heidelberg.10.1007/978-3-642-69767-8_54
Language: English
Page range: 21 - 30
Submitted on: May 15, 2021
Accepted on: May 26, 2021
Published on: Jul 1, 2021
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Asmaa Sayed Ahmed, Arshad Abdulkhalq Yaseen, Triska Dlshad Bakr, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.