References
- Basiri A, Kashi AH, Salehi Omran H, Borumandnia N, Golshan S, Narouie B, et al. National lifetime prevalence and demographic factors of urolithiasis in Iran. Urol J. 2023; 20:102–8.
- Unno R, Taguchi K, Hosier G, Usawachintachit M, Sui W, Yang H, et al. Maternal family history of urolithiasis is associated with earlier age of onset of stone disease. World J Urol. 2023; 41:241–7.
- Wang K, Ge J, Han W, Wang D, Zhao Y, Shen Y, et al. Risk factors for kidney stone disease recurrence: a comprehensive meta-analysis. BMC Urol. 2022; 22:62.
- Huang L, Qi C, Zhu G, Ding J, Yuan L, Sun J, et al. Genetic testing enables a precision medicine approach for nephrolithiasis and nephrocalcinosis in pediatrics: a single-center cohort. Mol Genet Genomics. 2022; 297:1049–61.
- Halbritter J. Genetics of kidney stone disease-polygenic meets monogenic. Nephrol Ther. 2021; 17s:S88–94.
- Dissayabutra T, Kalpongkul N, Rattanaphan J, Boonla C, Srisa-Art M, Ungjaroenwathana W, et al. Urinary stone risk factors in the descendants of patients with kidney stone disease. Pediatr Nephrol. 2018; 33:1173–81.
- Dissayabutra T, Rattanapan J, Kalpongnukul N, Mingmongkol S, Ungchareonwattana W, Boonla C, et al. Increased protein excretion, including albumin, by children of patients with urolithiasis. Asian Biomed (Res Rev News). 2015; 9:401–8.
- Bargagli M, Moochhala S, Robertson WG, Gambaro G, Lombardi G, Unwin RJ, et al. Urinary metabolic profile and stone composition in kidney stone formers with and without heart disease. J Nephrol. 2022; 35:851–7.
- Arafa A, Eshak ES, Iso H, Shirai K, Muraki I, Sawada N, et al. Urinary stones and risk of coronary heart disease and stroke: the Japan public health center-based prospective study. J Atheroscler Thromb. 2020; 27:1208–15.
- Tosukhowong P, Kulpradit P, Chaiyarit S, Ungjareonwattana W, Kalpongnukul N, Ratchanon S, et al. Lime powder treatment reduces urinary excretion of total protein and transferrin but increases uromodulin excretion in patients with urolithiasis. Urolithiasis. 2018; 46:257–64.
- Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin Chim Acta. 2014; 429:81–9.
- Ortega-Lozano AJ, Jiménez-Uribe AP, Aranda-Rivera AK, Gómez-Caudillo L, Ríos-Castro E, Tapia E, et al. Expression profiles of kidney mitochondrial proteome during the progression of the unilateral ureteral obstruction: focus on energy metabolism adaptions. Metabolites. 2022; 12:936.
- Yang Y, Hong S, Li C, Zhang J, Hu H, Chen X, et al. Proteomic analysis reveals some common proteins in the kidney stone matrix. PeerJ. 2021; 9:e11872.
- Lasota A, Wasilewska A, Rybi-Szumińska A. Current status of protein biomarkers in urolithiasis-a review of the recent literature. J Clin Med. 2023; 12:7135.
- Sayer JA. Progress in understanding the genetics of calcium containing nephrolithiasis. J Am Soc Nephrol. 2017; 28:748–59.
- Sritippayawan S, Borvornpadungkitti S, Paemanee A, Predanon C, Susaengrat W, Chuawattana D, et al. Evidence suggesting a genetic contribution to kidney stone in northeastern Thai population. Urol Res. 2009; 37:141–6.
- Dissayabutra T, Kalpongnukul N, Chindaphan K, Srisa-Art M, Ungjaroenwathana W, Kaewwongse M, et al. Urinary sulfated glycosaminoglycan insufficiency and chondroitin sulfate supplement in urolithiasis. PLoS One. 2019; 14:e0213180.
- Remer T, Neubert A, Maser-Gluth C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr. 2002; 75:561–9.
- Pearson LJ, Klaharn IY, Thongsawang B, Manuprasert W, Saejew T, Somparn P, et al. Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. PLoS One. 2017; 12:e0178601.
- Tiselius HG. Aspects on estimation of the risk of calcium oxalate crystallization in urine. Urol Int. 1991; 47:255–9.
- de Serres F, Blanco I. Role of alpha-1 antitrypsin in human health and disease. J Intern Med. 2014; 276:311–35.
- Lisowska-Myjak B. AAT as a diagnostic tool. Clin Chim Acta. 2005; 352:1–13.
- Lugo CI, Liu LP, Bala N, Morales AG, Gholam MF, Abchee JC, et al. Human alpha-1 antitrypsin attenuates ENaC and MARCKS and lowers blood pressure in hypertensive diabetic db/db Mice. Biomolecules. 2022; 13:66.
- McEvoy NL, Clarke JL, Mc Elvaney OJ, Mc Elvaney OF, Boland F, Hyland D, et al. A randomised, double-blind, placebo-controlled, pilot trial of intravenous plasma purified alpha-1 antitrypsin for SARS-CoV-2-induced acute respiratory distress syndrome: a structured summary of a study protocol for a randomised, controlled trial. Trials. 2021; 22:288.
- Marengo SR, Resnick MI, Yang L, Chung JY. Differential expression of urinary inter-alpha-trypsin inhibitor trimers and dimers in normal compared to active calcium oxalate stone forming men. J Urol. 1998; 159:1444–50.
- Jeong KH, Lim JH, Lee KH, Kim MJ, Jung HY, Choi JY, et al. Protective effect of alpha 1-antitrypsin on renal ischemia-reperfusion iInjury. Transplant Proc. 2019; 51:2814–22.
- Ganz T, Nemeth E. Iron balance and the role of hepcidin in chronic kidney disease. Semin Nephrol. 2016; 36:87–93.
- Gaweda AE. Markers of iron status in chronic kidney disease. Hemodial Int. 2017; 21 Suppl 1(Suppl 1):S21–7.
- Li B, Wang J, Ye W. A meta-analysis of urinary transferrin for early diagnosis of diabetic nephropathy. Lab Med. 2024; 55:413–9.
- Casanova AG, Vicente-Vicente L, Hernández-Sánchez MT, Prieto M, Rihuete MI, Ramis LM, et al. Urinary transferrin pre-emptively identifies the risk of renal damage posed by subclinical tubular alterations. Biomed Pharmacother. 2020; 121:109684.
- He Z, Liao W, Song Q, Li B, Liu J, Xiong Y, et al. Role of ferroptosis induced by a high concentration of calcium oxalate in the formation and development of urolithiasis. Int J Mol Med. 2021; 47:289–301.
- Siener R, Löhr P, Hesse A. Urinary risk profile, impact of diet, and risk of calcium oxalate urolithiasis in idiopathic uric acid stone disease. Nutrients. 2023; 15:572.
- Wang P, Zhang H, Zhou J, Jin S, Liu C, Yang B, et al. Study of risk factor of urinary calculi according to the association between stone composition with urine component. Sci Rep. 2021; 11:8723.
- Rodgers AL. Urinary saturation: casual or causal risk factor in urolithiasis? BJU Int. 2014; 114:104–10.
- Yuzhakov S, Steadman SD, Otto BJ, Bird VG, Canales BK. 24-hour urine calcium oxalate supersaturation risk correlates with computerized tomography volumetric calcium oxalate stone growth. J Urol. 2021; 206:1438–44.
- Kang J, Liu J, Ding H, Li X, Wang Q, Guo X, et al. Urine alpha1-microglobulin is a better marker for early tubular dysfunction than beta2-microglobulin among tenofovir-exposed human immunodeficiency virus-infected men who have sex with men. Braz J Infect Dis. 2015; 19:410–6.
- Stefanovic V, Djukanovic L, Cukuranovic R, Bukvic D, Lezaic V, Maric I, et al. Beta2-microglobulin and alpha1-microglobulin as markers of Balkan endemic nephropathy, a worldwide disease. Ren Fail. 2011; 33:176–83.
- Fries E, Blom AM. Bikunin-not just a plasma proteinase inhibitor. Int J Biochem Cell Biol. 2000; 32:125–37.
- Akerstrom B, Logdberg L, Berggard T, Osmark P, Lindqvist A. Alpha(1)-microglobulin: a yellow-brown lipocalin. Biochim Biophys Acta. 2000; 1482:172–84.
- Olsson MG, Nilsson EJ, Rutardottir S, Paczesny J, Pallon J, Akerstrom B. Bystander cell death and stress response is inhibited by the radical scavenger alpha(1)-microglobulin in irradiated cell cultures. Radiat Res. 2010; 174:590–600.
- Akerstrom B, Maghzal GJ, Winterbourn CC, Kettle AJ. The lipocalin alpha1-microglobulin has radical scavenging activity. J Biol Chem. 2007; 282:31493–503.
- Okuyama M, Yamaguchi S, Yachiku S. Identification of bikunin isolated from human urine inhibits calcium oxalate crystal growth and its localization in the kidneys. Int J Urol. 2003; 10:530–5.
- Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y. Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol. 1999; 10 Suppl 14:S436–40.
- Eguchi Y, Inoue M, Iida S, Matsuoka K, Noda S. Heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) and bikunin are up-regulated during calcium oxalate nephrolithiasis in rat kidney. Kurume Med J. 2002; 49:99–107.
- Médétognon-Benissan J, Tardivel S, Hennequin C, Daudon M, Drüeke T, Lacour B. Inhibitory effect of bikunin on calcium oxalate crystallization in vitro and urinary bikunin decrease in renal stone formers. Urol Res. 1999; 27:69–75.
- Suzuki M, Kobayashi H, Kageyama S, Shibata K, Fujie M, Terao T. Excretion of bikunin and its fragments in the urine of patients with renal stones. J Urol. 2001; 166:268–74.
- Mukhopadhyay S, Mondal SA, Kumar M, Dutta D. Proinflammatory and antiinflammatory attributes of fetuin-a: a novel hepatokine modulating cardiovascular and glycemic outcomes in metabolic syndrome. Endocr Pract. 2014; 20: 1345–51.
- Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol. 2021; 17:417–33.
- Aksoy H, Aksoy Y, Ozturk N, Aydin HR, Yildirim AK, Akçay F. Fetuin-A gene polymorphism in patients with calcium oxalate stone disease. Urology. 2010; 75:928–32.
- Tsai MT, Tseng WC, Lee KH, Lin CC, Ou SM, Li SY. Associations of urinary fetuin-A with histopathology and kidney events in biopsy-proven kidney disease. Clin Kidney J. 2024; 17:sfae065.
- Kuro OM. Calcium phosphate microcrystallopathy as a paradigm of chronic kidney disease progression. Curr Opin Nephrol Hypertens. 2023; 32:344–51.
- Stejskal D, Karpisek M, Vrtal R, Student V, Solichova P, Fiala R, et al. Urine fetuin-A values in relation to the presence of urolithiasis. BJU Int. 2008; 101:1151–4.
- Mehrsai A, Guitynavard F, Nikoobakht MR, Gooran S, Ahmadi A. The relationship between serum and urinary fetuin-A levels and kidney stone formation among kidney stone patients. Cent European J Urol. 2017; 70:394–9.
- Jenkins NT, McKenzie JA, Hagberg JM, Witkowski S. Plasma fetuin-A concentrations in young and older high-and low-active men. Metabolism. 2011; 60:265–71.
- Bao D, Wang Y, Zhao MH. Oxalate nephropathy and the mechanism of oxalate-induced kidney injury. Kidney Dis (Basel). 2023; 9:459–68.
- Yagisawa T, Hayashi T, Yoshida A, Kobayashi C, Okuda H, Ishikawa N, et al. Comparison of metabolic risk factors in patients with recurrent urolithiasis stratified according to age and gender. Eur Urol. 2000; 38:297–301.
- Komosinska-Vassev K, Blat D, Olczyk P, Szeremeta A, Jura-Półtorak A, Winsz-Szczotka K, et al. Urinary glycosaminoglycan (uGAG) excretion in healthy pediatric and adolescent population. Clin Biochem. 2014; 47:1341–3.
- Cupisti A, Meola M, D’Alessandro C, Bernabini G, Pasquali E, Carpi A, et al. Insulin resistance and low urinary citrate excretion in calcium stone formers. Biomed Pharmacother. 2007; 61:86–90.