Have a personal or library account? Click to login
Development of a methodology for the volume estimation of the prefrontal cortical subfields in very pre-term infants using magnetic resonance imaging and stereology Cover

Development of a methodology for the volume estimation of the prefrontal cortical subfields in very pre-term infants using magnetic resonance imaging and stereology

Open Access
|Aug 2025

References

  1. Kolk SM, Rakic P. Development of prefrontal cortex. Neuropsychopharmacology. 2022; 47:41–57.
  2. Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev. 2016; 70:4–12.
  3. Luna B, Thulborn KR, Munoz DP, Merriam EP, Garver KE, Minshew NJ, et al. Maturation of widely distributed brain function subserves cognitive development. Neuroimage. 2001; 13:786–93.
  4. de Araújo Costa Folha OA, Bahia CP, de Aguiar GPS, Herculano AM, Coelho NLG, de Sousa MBC, et al. Effect of chronic stress during adolescence in prefrontal cortex structure and function. Behav Brain Res. 2017; 326:44–51.
  5. Hoftman GD, Lewis DA. Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull. 2011; 37:493–503.
  6. Gabrieli JDE, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA. 1998; 95:906–13.
  7. Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JDE. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002; 33:301–11.
  8. Moriguchi Y, Hiraki K. Neural origin of cognitive shifting in young children. Proc Natl Acad Sci USA. 2009; 106:6017–21.
  9. Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017; 151:105–16.
  10. Lee KH, Lee HY, Park I, Jeon JE, Kim N, Oh SM, et al. Life stress, sleep disturbance and depressive symptoms: the moderating role of prefrontal activation during emotion regulation. Aust N Z J Psychiatry. 2022; 56:709–20.
  11. Mandarim-De-Lacerda CA. What is the interest of normal and pathological morphological research to be quantitative? The example of stereology. Brazil J Morphol Sci. 1999; 16:131–9.
  12. García-Fiñana M, Cruz-Orive LM, Mackay CE, Pakkenberg B, Roberts N. Comparison of MR imaging against physical sectioning to estimate the volume of human cerebral compartments. Neuroimage. 2003; 18:505–16.
  13. Cavalieri B. Geometria indivisbilus continuorum (Typis clementis ferronij, bononiae). Reprinted in 1966 as Geometria indivisbili (Unione tipografico editrice, torinese, torino). 1635.
  14. Mayhew TM, Oslen DR. Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J Anat. 1991; 178:133–44.
  15. Thune JJ, Pakkenberg B. Stereological studies of the schizophrenic brain. Brain Res Rev. 2000; 31:200–4.
  16. Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014; 42:180–92.
  17. Powell J, Lewis PA, Roberts N, García-Fiñana M, Dunbar RIM. Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proc R Soc B. 2012; 279:2157–62.
  18. Mayhew TM. A review of recent advances in stereology for quantifying neural structure. J Neurocytol. 1992; 21:313–28.
  19. Cruz-Orive LM. Precision of Cavalieri sections and slices with local errors. J Microsc. 1999; 193:182–98.
  20. Slomianka L, West MJ. Estimators of the precision of stereological estimates: an example based on the CA1 pyramidal cell layer of rats. Neuroscience. 2005; 136:757–67.
  21. Howard MA, Roberts N, García-Fiñana M, Cowell PE. Volume estimation of prefrontal cortical subfields using MRI and stereology. Brain Res Brain Res Protoc. 2003; 10:125–38.
  22. Carrion VG, Weems CF, Richert K, Hoffman BC, Reiss AL. Decreased prefrontal cortical volume associated with increased bedtime cortisol in traumatized youth. Biol Psychiatry. 2010; 68:491–3.
  23. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA. 2000; 284:1939–47.
  24. Rajapakse JC. Random-grid stereologic volumetry of MR head scans. J Magn Reson Imaging. 2000; 12:833–41.
  25. Keller SS, Mackay CE, Barrick TR, Wieshmann UC, Howard MA, Roberts N. Voxel-based morphometric comparison of hippocampal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. Neuroimage. 2002; 16:23–31.
  26. Doherty CP, Fitzsimons M, Holohan T, Mohamed HB, Farrell M, Meredith GE, et al. Accuracy and validity of stereology as a quantitative method for assessment of human temporal lobe volumes acquired by magnetic resonance imaging. Magn Reson Imaging. 2000; 18:1017–25.
  27. Khan AR, Kroenke CD, Wiborg O, Chuhutin A, Nyengaard JR, Hansen B, et al. Differential microstructural alterations in rat cerebral cortex in a model of chronic mild stress depression. PLoS One. 2018; 13:e0192329. doi: 10.1371/journal.pone.0192329
  28. Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, Arnold SE, et al. Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry. 2000; 57:761–8.
  29. Caviness VS Jr, Meyer J, Makris N, Kennedy DN. MRI-based topographic parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cogn Neurosci. 1996; 8:566–87.
  30. Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, et al. Human frontal cortex: an MRI-based parcellation method. Neuroimage. 1999; 10:500–19.
  31. Ranta ME, Chen M, Crocetti D, Prince JL, Subramaniam K, Fischl B, et al. Automated MRI parcellation of the frontal lobe. Hum Brain Mapp. 2014; 35:2009–26.
  32. Ranta ME, Crocetti D, Clauss JA, Kraut MA, Mostofsky SH, Kaufmann WE. Manual MRI parcellation of the frontal lobe. Psychiatry Res. 2009; 172:147–54.
  33. Pierri JN, Volk CLE, Auh S, Sampson A, Lewis DA. Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 2001; 58:466–73.
  34. Michel RP, Cruz-Orive LM. Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. J Microsc. 1988; 150:117–36.
  35. Thune JJ, Uylings HBM, Pakkenberg B. No deficit in total number of neurons in the prefrontal cortex in schizophrenics. J Psychiatr Res. 2001; 35:15–21.
  36. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005; 15:1676–89.
  37. Yu Q, McCall DM, Homayouni R, Tang L, Chen Z, Schoff D, et al. Age-associated increase in mnemonic strategy use is linked to prefrontal cortex development. Neuroimage. 2018; 181:162–9.
  38. Kirchhoff BA, Gordon BA, Head D. Prefrontal gray matter volume mediates age effects on memory strategies. Neuroimage. 2014; 90:326–34.
  39. Şimşek GK, Canpolat FE, Büyüktiryaki M, Kutman GK, Tayman C. Brain volumes of very low birth weight infants measured by two-dimensional cranial ultrasonography: a prospective cohort study. Curr Med Imaging Rev. 2019; 15:994–1000.
  40. Tao L, Kannan K, Wong CM, Arcaro KF, Butenhoff JL. Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environ Sci Technol. 2008; 42:3096–101.
DOI: https://doi.org/10.2478/abm-2025-0023 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 174 - 182
Published on: Aug 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Faten Aldhafeeri, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution 4.0 License.