References
- Ralli T, Neupane YR, Saifi Z, Kohli K. Gut microbiota as an emerging therapeutic avenue for the treatment of nonalcoholic fatty liver disease. Curr Pharm Des. 2021; 27:4677–85.
- Ralli T, Saifi Z, Tyagi N, Vidyadhari A, Aeri V, Kohli K. Deciphering the role of gut metabolites in non-alcoholic fatty liver disease. Crit Rev Microbiol. 2023; 49:815–33.
- Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020; 9:875. doi: 10.3390/cells9040875
- Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol. 2021; 74:1442–54.
- Deng YR, Ma HD, Tsuneyama K, Yang W, Wang YH, Lu FT, et al. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun. 2013; 46:25–34.
- Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: looking outside the box. J Hepatol. 2020; 72:342–52.
- Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016; 283:2219–32.
- Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002; 7:793–807.
- Tiegs G, Horst AK. TNF in the liver: targeting a central player in inflammation. Semin Immunopathol. 2022; 44:445–59.
- Yang YM, Seki E. TNFα in liver fibrosis. Curr Pathobiol Rep. 2015; 3:253–61.
- Osawa Y, Hoshi M, Yasuda I, Saibara T, Moriwaki H, Kozawa O. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells. PLoS One. 2013; 8:e65251. doi: 10.1371/journal.pone.0065251
- Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. New drugs for hepatic fibrosis. Front Pharmacol. 2022; 13:874408. doi: 10.3389/fphar.2022.874408
- Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, et al. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B. 2020; 10:3–18.
- Ralli T, Saifi Z, Kumari A, Aeri V, Kohli K. In-silico, in-vitro and ex-vivo evidence of combining silymarin phytopharmaceutical with piperine, and fulvic acid for enhancing its solubility and permeability. Pharm Dev Technol. 2023; 28:595–610.
- Loguercio C, Festi D. Silybin and the liver: from basic research to clinical practice. World J Gastroenterol. 2011; 17:2288–301.
- Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci. 2011; 14:308–17.
- Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017; 22:191. doi: 10.3390/molecules22020191
- Xi Y, Li Y, Xu P, Li S, Liu Z, Tung HC, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021; 7:eabg9241. doi: 10.1126/sciadv.abg9241
- Cho ME, Kopp JB. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs. 2010; 19:275–83.
- Poo JL, Torre A, Aguilar-Ramírez JR, Cruz M, Mejía-Cuán L, Cerda E, et al. Benefits of prolonged-release pirfenidone plus standard of care treatment in patients with advanced liver fibrosis: PROMETEO study. Hepatol Int. 2020; 14:817–27.
- Kim S. Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov. 2016; 11:843–55.
- Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016; 44:D1202-13.
- Arcon JP, Modenutti CP, Avendaño D, Lopez ED, Defelipe LA, Ambrosio FA, et al. AutoDock Bias: improving binding mode prediction and virtual screening using known protein-ligand interactions. Bioinformatics. 2019; 35:3836–8.
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785–91.
- Bitencourt-Ferreira G, Pintro VO, de Azevedo WF Jr. Docking with AutoDock4. Methods Mol Biol. 2019; 2053:125–48.
- Tiwari A, Tiwari V, Sharma A, Singh D, Singh Rawat M, Virmani T, et al. Tanshinone-I for the treatment of uterine fibroids: molecular docking, simulation, and density functional theory investigations. Saudi Pharm J. 2023; 31:1061–76.
- Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res. 2014; 34:837–43.
- Yan HM, Xia MF, Wang Y, Chang XX, Yao XZ, Rao SX, et al. Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS One. 2015; 10:e0134172. doi: 10.1371/journal. pone.0134172
- Ralli T, Kalaiselvan V, Tiwari R, Shukla S, Kholi K. Clinical and regulatory status of silymarin. Appl Drug Res Clin Trials Regul Aff. 2021; 8:104–11.
- Wah Kheong C, Nik Mustapha NR, Mahadeva S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2017; 15:1940–49.e8.
- Ralli T, Tripathi T, Kalaiselvan V, Tiwari R, Aeri V, Kohli K. Silymarin as a phyto-pharmaceutical: isolation, simultaneous quantification of four biomarkers and in-silico anti-inflammatory activity. Chin J Anal Chem. 2023; 51:100174. doi: 10.1016/j.cjac.2022.100174
- Ralli T, Saifi Z, Usmani Z, Aeri V, Aqil M, Kohli K. Enhancing the bioavailability of silymarin phytopharmaceutical by using piperine and fulvic acid and simultaneously quantifying three biomarkers in plasma. Curr Anal Chem. 2023; 19(9):669–76.
- Goldberg FW, Ward RA, Powell SJ, Debreczeni JE, Norman RA, Roberts NJ, et al. Rapid generation of a high quality lead for transforming growth factor-beta (TGF-beta) type I receptor (ALK5). J Med Chem. 2009; 52:7901–5.
- Valentinis B, Porcellini S, Asperti C, Cota M, Zhou D, Di Matteo P, et al. Mechanism of action of the tumor vessel targeting agent NGR-hTNF: role of both NGR peptide and hTNF in cell binding and signaling. Int J Mol Sci. 2019; 20:4511. doi: 10.3390/ijms20184511
- Peng Y, Yang T, Huang K, Shen L, Tao Y, Liu C. Salvia Miltiorrhiza ameliorates liver fibrosis by activating hepatic natural killer cells in vivo and in vitro. Front Pharmacol. 2018; 9:762. doi: 10.3389/fphar.2018.00762
- Ralli T, Ahmad S, Saifi Z, Alhalmi A, Aeri V, Aqil M, et al. Exploring the therapeutic potential of silymarin-based herbal remedy (prebiotic) and probiotic blend in a mouse model of NAFLD: insights into gut microbiota modulation and liver health. Heliyon. 2024; 10:e33505. doi: 10.1016/j.heliyon.2024.e33505
- Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008; 134:1655–69.
- Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011; 141:1572–85.
- Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 2019; 8:1419. doi: 10.3390/cells8111419
- Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, et al. Salvia miltiorrhiza Bge. (Danshen) in the treatingn-alcoholicf Liver disease based on the regulator of metabolic targets. Front Cardiovasc Med. 2022; 9:842980. doi: 10.3389/fcvm.2022.842980
- Jaffar HM, Al-Asmari F, Khan FA, Rahim MA, Zongo E. Silymarin: unveiling its pharmacological spectrum and therapeutic potential in liver diseases—a comprehensive narrative review. Food Sci Nutr. 2024; 12:3097–111.
- Manns MP, Lohse AW, Vergani D. Autoimmune hepatitis—update 2015. J Hepatol. 2015; 62:S100-11.
- Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014; 20:2515. doi: 10.3748/wjg.v20.i10.2515