Have a personal or library account? Click to login
Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral–gut–brain axis: implications for human health and well-being Cover

Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral–gut–brain axis: implications for human health and well-being

Open Access
|Feb 2025

References

  1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396:1223–49.
  2. Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int J Environ Res Public Health. 2018; 15:1380. doi: 10.3390/ijerph15071380
  3. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389:1907–18.
  4. Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, et al. Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study. Lancet. 2017; 389:718–26.
  5. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect. 2015; 123:381–9.
  6. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014; 383:785–95.
  7. Narengaowa, Kong W, Lan F, Awan UF, Qing H, Ni J. The Oral-Gut-Brain AXIS: the influence of microbes in Alzheimer's disease. Front Cell Neurosci. 2021; 15:633735. doi: 10.3389/fncel.2021.633735
  8. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28:203–9.
  9. Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol. 2024; 22:89–104.
  10. Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 2020; 287:833–55.
  11. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010; 10:159–69.
  12. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017; 46:562–76.
  13. Hovav AH. Dendritic cells of the oral mucosa. Mucosal Immunol. 2014; 7:27–37.
  14. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9:799–809.
  15. Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, et al. Oral-gut-brain axis in experimental models of periodontitis: associating gut dysbiosis with neurodegenerative diseases. Front Aging. 2021; 2:781582. doi: 10.3389/fragi.2021.781582
  16. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019; 99:1877–2013.
  17. Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018; 120:149–63.
  18. Bowland GB, Weyrich LS. The oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspective. Front Psychiatry. 2022; 13:810008. doi: 10.3389/fpsyt.2022.810008
  19. Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018; 240:817–30.
  20. Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014; 5:215–9.
  21. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015; 74:136–43.
  22. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016; 128:67–74.
  23. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016; 8:E69–74.
  24. Kim BE, Kim J, Goleva E, Berdyshev E, Lee J, Vang KA, et al. Particulate matter causes skin barrier dysfunction. JCI Insight. 2021; 6:e145185. doi: 10.1172/jci.insight.145185
  25. Yang TH, Masumi S, Weng SP, Chen HW, Chuang HC, Chuang KJ. Personal exposure to particulate matter and inflammation among patients with periodontal disease. Sci Total Environ. 2015; 502:585–9.
  26. Chu YH, Kao SW, Tantoh DM, Ko PC, Lan SJ, Liaw YP. Association between fine particulate matter and oral cancer among Taiwanese men. J Investig Med. 2019; 67:34–8.
  27. Elten M, Benchimol EI, Fell DB, Kuenzig ME, Smith G, Chen H, et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort study. Environ Int. 2020; 138:105676. doi: 10.1016/j.envint.2020.105676
  28. Han C, Lu Y, Cheng H, Wang C, Chan P. The impact of long-term exposure to ambient air pollution and second-hand smoke on the onset of Parkinson disease: a review and meta-analysis. Pub Health. 2020; 179:100–10.
  29. Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer's disease: a population-based cohort study in Taiwan. J Alzheimers Dis. 2015; 44:573–84.
  30. Masroor K, Shamsipour M, Mehrdad R, Fanaei F, Aghaei M, Yunesian M. Exposure to ambient gaseous air pollutants and adult lung function: a systematic review. Rev Environ Health. 2021; 38:137–50.
  31. Nuvolone D, Petri D, Voller F. The effects of ozone on human health. Environ Sci Pollut Res Int. 2018; 25:8074–88.
  32. Rivas-Arancibia S, Miranda-Martínez A, Rodríguez-Martínez E, Hernández-Orozco E, Valdés-Fuentes M, De la Rosa-Sierra R. Ozone environmental pollution: relationship between the intestine and neurodegenerative diseases. Antioxidants (Basel). 2023; 12:1323. doi: 10.3390/antiox12071323
  33. Kan H, Wong CM, Vichit-Vadakan N, Qian Z; PAPA Project Teams. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environ Res. 2010; 110:258–64.
  34. Głódkowska N, Emerich K. The impact of environmental air pollution on the prevalence of molar incisor hypomineralization in schoolchildren: a cross-sectional study. Adv Clin Exp Med. 2020; 29:1469–77.
  35. Xu C, Kan HD, Fan YN, Chen RJ, Liu JH, Li YF, et al. Acute effects of air pollution on enteritis admissions in Xi'an, China. J Toxicol Environ Health A. 2016; 79:1183–9.
  36. Shen S, Li X, Yuan C, Huang Q, Liu D, Ma S, et al. Association of short-term exposure to sulfur dioxide and hospitalization for ischemic and hemorrhagic stroke in Guangzhou, China. BMC Public Health. 2020; 20:263. doi: 10.1186/s12889-020-8354-0
  37. Liu FH, Xing Z, Gong TT, Zhang JY, Huang YH, Li J, et al. Maternal exposure to sulfur dioxide and the risk of oral clefts in Liaoning Province, China: a population-based case-control study. Environ Sci Pollut Res Int. 2021; 28:39101–9.
  38. Rao A, Ahmed MK, Taub PJ, Mamoun JS. The correlation between maternal exposure to air pollution and the risk of orofacial clefts in infants: a systematic review and meta-analysis. J Oral Maxillofac Res. 2016; 7:e2. doi: 10.5037/jomr.2016.7102
  39. Huang S, Li H, Wang M, Qian Y, Steenland K, Caudle WM, et al. Long-term exposure to nitrogen dioxide and mortality: a systematic review and meta-analysis. Sci Total Environ. 2021; 776:145968. doi: 10.1016/j.scitotenv.2021.145968
  40. D'Amato G, Liccardi G, D'Amato M, Cazzola M. Respiratory allergic diseases induced by outdoor air pollution in urban areas. Monaldi Arch Chest Dis. 2002; 57:161–3.
  41. Tian L, Qiu H, Sun S, Tsang H, Chan KP, Leung WK. Association between emergency admission for peptic ulcer bleeding and air pollution: a case-crossover analysis in Hong Kong's elderly population. Lancet Planet Health. 2017; 1:e74–81.
  42. Jo S, Kim YJ, Park KW, Hwang YS, Lee SH, Kim BJ, et al. Association of NO2 and other air pollution exposures with the risk of Parkinson disease. JAMA Neurol. 2021; 78:800–8.
  43. Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. J Neurol Sci. 2007; 262:122–30.
  44. Gregorczyk-Maga I, Celejewska-Wojcik N, Gosiewska-Pawlica D, Darczuk D, Kesek B, Maga M, et al. Exposure to air pollution and oxidative stress markers in patients with potentially malignant oral disorders. J Physiol Pharmacol. 2019; 70:115–20. doi: 10.26402/jpp.2019.1.09
  45. Brito-Zerón P, Flores-Chávez A, Ng WF, Fanny Horváth I, Rasmussen A, Priori R, et al. Exposure to air pollution as an environmental determinant of how Sjögren's disease is expressed at diagnosis. Clin Exp Rheumatol. 2023; 41:2448–57.
  46. Sabour S, Harzand-Jadidi S, Jafari-Khounigh A, Zarea Gavgani V, Sedaghat Z, Alavi N. The association between ambient air pollution and migraine: a systematic review. Environ Monit Assess. 2024; 196:271. doi: 10.1007/s10661-024-12376-w
  47. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020; 8:14. doi: 10.3389/fpubh.2020.00014
  48. Sam K, Onyena AP, Zabbey N, Odoh CK, Nwipie GN, Nkeeh DK, et al. Prospects of emerging PAH sources and remediation technologies: insights from Africa. Environ Sci Pollut Res Int. 2023; 30:39451–73.
  49. Zhang G, Huang X, Liao W, Kang S, Ren M, Hai J. Measurement of dioxin emissions from a small-scale waste incinerator in the absence of air pollution controls. Int J Environ Res Public Health. 2019; 16:1267. doi: 10.3390/ijerph16071267
  50. Paget-Bailly S, Cyr D, Luce D. Occupational exposures to asbestos, polycyclic aromatic hydrocarbons and solvents, and cancers of the oral cavity and pharynx: a quantitative literature review. Int Arch Occup Environ Health. 2012; 85:341–51.
  51. Cho J, Sohn J, Yang SH, Lee SK, Noh Y, Oh SS, et al. Polycyclic aromatic hydrocarbons and changes in brain cortical thickness and an Alzheimer's disease-specific marker for cortical atrophy in adults: a longitudinal neuroimaging study of the EPINEF cohort. Chemosphere. 2023; 338:139596. doi: 10.1016/j.chemosphere.2023.139596
  52. Tanaka M, Okuda T, Itoh K, Ishihara N, Oguro A, Fujii-Kuriyama Y, et al. Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol. 2023; 20:6. doi: 10.1186/s12989-023-00517-x
  53. Alaluusua S, Lukinmaa PL. Developmental dental toxicity of dioxin and related compounds – a review. Int Dent J. 2006; 56:323–31.
  54. Kawasaki G, Yoshitomi I. Effect of dioxin-related compounds on oral pigmentation in patients affected by the Yusho incident. Arch Oral Biol. 2019; 102:244–8.
  55. Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ, Hennig B. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut. 2018; 242:1022–32.
  56. Tran NN, Pham TT, Ozawa K, Nishijo M, Nguyen AT, Tran TQ, et al. Impacts of perinatal dioxin exposure on motor coordination and higher cognitive development in Vietnamese preschool children: a five-year follow-up. PLoS One. 2016; 11:e0147655. doi: 10.1371/journal.pone.0147655
  57. Suvarapu LN, Baek SO. Determination of heavy metals in the ambient atmosphere. Toxicol Ind Health. 2017; 33:79–96.
  58. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018; 119:157–84.
  59. Gundacker C, Forsthuber M, Szigeti T, Kakucs R, Mustieles V, Fernandez MF, et al. Lead (Pb) and neurodevelopment: a review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health. 2021; 238:113855. doi: 10.1016/j.ijheh.2021.113855
  60. He L, Norris C, Cui X, Li Z, Barkjohn KK, Teng Y, et al. Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. Environ Res. 2022; 206:112275. doi: 10.1016/j.envres.2021.112275
  61. Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022; 77:1418–49.
  62. Ceretti E, Feretti D, Viola GC, Zerbini I, Limina RM, Zani C, et al. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants. PLoS One. 2014; 9:e96524. doi: 10.1371/journal.pone.0096524
  63. Mondal NK, Dutta A, Banerjee A, Chakraborty S, Lahiri T, Ray MR. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells. J Environ Pathol Toxicol Oncol. 2009; 28:253–9.
  64. Chen H, Peng L, Wang Z, He Y, Zhang X. Exploring the causal relationship between periodontitis and gut microbiome: unveiling the oral-gut and gut-oral axes through bidirectional Mendelian randomization. J Clin Periodontol. 2024; 51:417–30.
  65. Gaeckle NT, Pragman AA, Pendleton KM, Baldomero AK, Criner GJ. The oral-lung axis: the impact of oral health on lung health. Respir Care. 2020; 65:1211–20.
  66. Vignal C, Pichavant M, Alleman LY, Djouina M, Dingreville F, Perdrix E, et al. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part Fibre Toxicol. 2017; 14:46. doi: 10.1186/s12989-017-0227-z
  67. Bostancıklıoğlu M. Temporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2. Inflamm Bowel Dis. 2020; 26:e89–91.
  68. Morais LH, Hara DB, Bicca MA, Poli A, Takahashi RN. Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson's disease. Behav Pharmacol. 2018; 29:199–210.
  69. Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: the clinical impact on children and beyond. Rev Neurol (Paris). 2016; 172:69–80.
  70. Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008; 63:7–15.
  71. Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, et al. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol. 2024; 15:1358179. doi: 10.3389/fmicb.2024.1358179
  72. Yu W, Lu L, Ji X, Qian Q, Lin X, Wang H. Recent advances on possible association between the periodontal infection of Porphyromonas gingivalis and central nervous system injury. J Alzheimers Dis. 2021; 84:51–9.
  73. Cestari JA, Fabri GM, Kalil J, Nitrini R, Jacob-Filho W, Tesseroli de Siqueira JT, et al. Oral infections and cytokine levels in patients with Alzheimer's disease and mild cognitive impairment compared with controls. J Alzheimers Dis. 2016; 54:845. doi: 10.3233/JAD-169006
  74. Mori C, Hakuta C, Endo K, Nariai T, Ueno M, Shinada K, et al. The effects of professional oral health care on patients in the subacute stage of emergent neurosurgical disorders. Spec Care Dentist. 2012; 32:259–64.
  75. Churg A, Brauer M. Ambient atmospheric particles in the airways of human lungs. Ultrastruct Pathol. 2000; 24:353–61.
  76. Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, composition, and lung diseases. Front Immunol. 2016; 7:3. doi: 10.3389/fimmu.2016.00003
  77. Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res. 2024; 19:519–28.
  78. Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host transcriptional regulatory genes and microbiome networks crosstalk through immune receptors establishing normal and tumor multiomics metafirm of the oral-gut-lung axis. Int J Mol Sci. 2023; 24:16638. doi: 10.3390/ijms242316638
  79. Ural BB, Caron DP, Dogra P, Wells SB, Szabo PA, Granot T, et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med. 2022; 28:2622–32.
  80. Pambianchi E, Pecorelli A, Valacchi G. Gastrointestinal tissue as a “new” target of pollution exposure. IUBMB Life. 2022; 74:62–73.
  81. Keulers L, Dehghani A, Knippels L, Garssen J, Papadopoulos N, Folkerts G, et al. Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: the gut-lung axis. Environ Pollut. 2022; 302:119066. doi: 10.1016/j.envpol.2022.119066
  82. Sze MA, Tsuruta M, Yang SW, Oh Y, Man SF, Hogg JC, et al. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One. 2014; 9:e111228. doi: 10.1371/journal.pone.0111228
  83. Breithaupt-Faloppa AC, Vitoretti LB, Cavriani G, Lino-dos-Santos-Franco A, Sudo-Hayashi LS, Oliveira-Filho RM, et al. Intestinal lymph-borne factors induce lung release of inflammatory mediators and expression of adhesion molecules after an intestinal ischemic insult. J Surg Res. 2012; 176:195–201.
  84. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017; 15:55–63.
  85. Wallace JL, Ianaro A, de Nucci G. Gaseous mediators in gastrointestinal mucosal defense and injury. Dig Dis Sci. 2017; 62:2223–30.
  86. Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 2011; 8:19. doi: 10.1186/1743-8977-8-19
  87. Wang J, Yan Y, Si H, Li J, Zhao Y, Gao T, et al. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. Ecotoxicol Environ Saf. 2023; 254:114702. doi: 10.1016/j.ecoenv.2023.114702
  88. Gu J, Shi Y, Zhu Y, Chen N, Wang H, Zhang Z, et al. Ambient air pollution and cause-specific risk of hospital admission in China: a nationwide time-series study. PLoS Med. 2020; 17:e1003188. doi: 10.1371/journal.pmed.1003188
  89. Vari HK, Roslund MI, Oikarinen S, Nurminen N, Puhakka R, Parajuli A, et al. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. Chemosphere. 2021; 265:128965. doi: 10.1016/j.chemosphere.2020.128965
  90. Liu CX, Liu YB, Peng Y, Peng J, Ma QL. Causal effect of air pollution on the risk of cardiovascular and metabolic diseases and potential mediation by gut microbiota. Sci Total Environ. 2024; 912:169418. doi: 10.1016/j.scitotenv.2023.169418
  91. Siopi E, Galerne M, Rivagorda M, Saha S, Moigneu C, Moriceau S, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Mol Psychiatry. 2023; 28:3002–12.
  92. Wu Y, Hang Z, Lei T, Du H. Intestinal flora affect Alzheimer's disease by regulating endogenous hormones. Neurochem Res. 2022; 47:3565–82.
  93. Sarubbo F, Cavallucci V, Pani G. The Influence of gut microbiota on neurogenesis: evidence and hopes. Cells. 2022; 11:382. doi: 10.3390/cells11030382
  94. Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 exposure and its possible role in neurodegenerative and mental disorders. Hum Exp Toxicol. 2023; 42:9603271231191436. doi: 10.1177/09603271231191436
  95. Wang L, Cai Y, Garssen J, Henricks PAJ, Folkerts G, Braber S. The bidirectional gut-lung axis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2023; 207:1145–60.
  96. Qu L, Cheng Q, Wang Y, Mu H, Zhang Y. COPD and gut-lung axis: how microbiota and host inflammasome influence COPD and related therapeutics. Front Microbiol. 2022; 13:868086. doi: 10.3389/fmicb.2022.868086
  97. Calderón-Garcidueñas L, González-Maciel A, Kulesza RJ, González-González LO, Reynoso-Robles R, Mukherjee PS, et al. Air pollution, combustion and friction derived nanoparticles, and Alzheimer's disease in urban children and young adults. J Alzheimers Dis. 2019; 70:343–60.
  98. Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Kulesza RJ, Mukherjee PS, Torres-Jardón R, et al. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. Environ Res. 2018; 166:348–62.
  99. Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, et al. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A. 2016; 113:10797–801.
  100. Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Mukherjee PS, Kulesza RJ, et al. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age. Environ Res. 2018; 164:475–87.
  101. Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009; 32:506–16.
  102. Alhussaini AR, Aljabri MR, Al-Harbi ZT, Abdulrahman Almohammadi G, Al-Harbi TM, Bashir S. Air pollution and its adverse effects on the central nervous system. Cureus. 2023; 15:e38927. doi: 10.7759/cureus.38927
  103. Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011; 8:105. doi: 10.1186/1742-2094-8-105
  104. Mukherjee A, Agrawal M. A global perspective of fine particulate matter pollution and its health effects. Rev Environ Contam Toxicol. 2018; 244:5–51.
  105. Xu Z, Wu H, Zhang H, Bai J, Zhang Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol. 2020; 40:1210–8.
  106. Xu X, Xu H, Qimuge A, Liu S, Wang H, Hu M, et al. MAPK/AP-1 pathway activation mediates AT1R upregulation and vascular endothelial cells dysfunction under PM2.5 exposure. Ecotoxicol Environ Saf. 2019; 170:188–94.
  107. Luo CM, Feng J, Zhang J, Gao C, Cao JY, Zhou GL, et al. 1,25-Vitamin D3 protects against cooking oil fumes-derived M2.5-induced cell damage through its anti-inflammatory effects in cardiomyocytes. Ecotoxicol Environ Saf. 2019; 179:249–56.
  108. Zheng R, Tao L, Jian H, Chang Y, Cheng Y, Feng Y, et al. NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. Ecotoxicol Environ Saf. 2018; 163:612–9.
  109. Bekki K, Ito T, Yoshida Y, He C, Arashidani K, He M, et al. M2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ Toxicol Pharmacol. 2016; 45:362–9.
  110. Miyata R, van Eeden SF. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol. 2011; 257:209–26.
  111. Fitch MN, Phillippi D, Zhang Y, Lucero J, Pandey RS, Liu J, et al. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in apolipoprotein E knockout mice. Environ Res. 2020; 181:108913. doi: 10.1016/j.envres.2019.108913
  112. Song J, Han K, Wang Y, Qu R, Liu Y, Wang S, et al. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders. Antioxidants (Basel). 2022; 11:1482. doi: 10.3390/antiox11081482
  113. Zhu X, Ji X, Shou Y, Huang Y, Hu Y, Wang H. Recent advances in understanding the mechanisms of PM2.5-mediated neurodegenerative diseases. Toxicol Lett. 2020; 329:31–7.
  114. Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H. A review of the possible associations between ambient M2.5 exposures and the development of Alzheimer's disease. Ecotoxicol Environ Saf. 2019; 174:344–52.
  115. Wang BR, Shi JQ, Ge NN, Ou Z, Tian YY, Jiang T, et al. PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer's disease. J Neuroinflammation. 2018; 15:132. doi: 10.1186/s12974-018-1178-5
  116. Zhu X, Xia Y, Wang H, Shi L, Yin H, Gu M, et al. PM2.5 induced neurotoxicity through unbalancing vitamin B12 metabolism by gut microbiota disturbance. Gut Microbes. 2023; 15:2267186. doi: 10.1080/19490976.2023.2267186
  117. Shou Y, Zhu X, Zhu D, Yin H, Shi Y, Chen M, et al. Ambient M2.5 chronic exposure leads to cognitive decline in mice: from pulmonary to neuronal inflammation. Toxicol Lett. 2020; 331:208–17.
  118. Kang YJ, Tan HY, Lee CY, Cho H. An air particulate pollutant induces neuroinflammation and neurodegeneration in human brain models. Adv Sci (Weinh). 2021; 8:e2101251. doi: 10.1002/advs.202101251
  119. Li W, Lin G, Xiao Z, Zhang Y, Li B, Zhou Y, et al. A review of respirable fine particulate matter (PM2.5)-induced brain damage. Front Mol Neurosci. 2022; 15:967174. doi: 10.3389/fnmol.2022.967174
  120. Liu X, Qian X, Xing J, Wang J, Sun Y, Wang Q, et al. Particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice. Toxicol Sci. 2018; 164:278–88.
  121. Ren H, Lu J, Ning J, Su X, Tong Y, Chen J, et al. Exposure to fine particulate matter induces self-recovery and susceptibility of oxidative stress and inflammation in rat lungs. Environ Sci Pollut Res Int. 2020; 27:40262–76.
  122. Ji X, Yue H, Ku T, Zhang Y, Yun Y, Li G, et al. Histone modification in the lung injury and recovery of mice in response to M2.5 exposure. Chemosphere. 2019; 220:127–36.
  123. Li Y, Lin B, Hao D, Du Z, Wang Q, Song Z, et al. Short-term PM2.5 exposure induces transient lung injury and repair. J Hazard Mater. 2023; 459:132227. doi: 10.1016/j.jhazmat.2023.132227
  124. Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: recent insights. Redox Biol. 2020; 34:101545. doi: 10.1016/j.redox.2020.101545
  125. Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid Redox Signal. 2018; 28:797–818.
  126. Zhong H, Lin H, Pang Q, Zhuang J, Liu X, Li X, et al. Macrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemia. Inflamm Res. 2021; 70:193–203.
  127. Sulimai N, Brown J, Lominadze D. Fibrinogen interaction with astrocyte ICAM-1 and PrPC results in the generation of ROS and neuronal death. Int J Mol Sci. 2021; 22:2391. doi: 10.3390/ijms22052391
  128. Lee HS, Jun JH, Jung EH, Koo BA, Kim YS. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation. Molecules. 2014; 19:12150–72.
  129. Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta. 2008; 1783:886–95.
  130. Cook-Mills JM. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cell Mol Biol (Noisy-le-grand). 2006; 52:8–16.
  131. Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. Ecotoxicol Environ Saf. 2022; 231:113170. doi: 10.1016/j.ecoenv.2022.113170
  132. Grevendonk L, Janssen BG, Vanpoucke C, Lefebvre W, Hoxha M, Bollati V, et al. Mitochondrial oxidative DNA damage and exposure to particulate air pollution in mother-newborn pairs. Environ Health. 2016; 15:10. doi: 10.1186/s12940-016-0095-2
  133. Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res. 2014; 762:133–66.
  134. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011; 2011:487074. doi: 10.1155/2011/487074
  135. Fan X, Dong T, Yan K, Ci X, Peng L. PM2.5 increases susceptibility to acute exacerbation of COPD via NOX4/Nrf2 redox imbalance-mediated mitophagy. Redox Biol. 2023; 59:102587. doi: 10.1016/j.redox.2022.102587
  136. Ji X, Li C, Zhu X, Yu W, Cai Y, Zhu X, et al. Methylcobalamin alleviates neuronal apoptosis and cognitive decline induced by M2.5 exposure in mice. J Alzheimers Dis. 2022; 86:1783–96.
  137. Gałuszka-Bulaga A, Tkacz K, Węglarczyk K, Siedlar M, Baran J. Air pollution induces pyroptosis of human monocytes through activation of inflammasomes and Caspase-3-dependent pathways. J Inflamm (Lond). 2023; 20:26. doi: 10.1186/s12950-023-00353-y
  138. Song Q, Zhou ZJ, Cai S, Chen Y, Chen P. Oxidative stress links the tumour suppressor 53 with cell apoptosis induced by cigarette smoke. Int J Environ Health Res. 2022; 32:1745–55.
  139. Wang W, Deng Z, Feng Y, Liao F, Zhou F, Feng S, et al. M2.5 induced apoptosis in endothelial cell through the activation of the p53-bax-caspase pathway. Chemosphere. 2017; 177:135–43.
  140. Wang Y, Li C, Zhang X, Kang X, Li Y, Zhang W, et al. Exposure to PM2.5 aggravates Parkinson's disease via inhibition of autophagy and mitophagy pathway. Toxicology. 2021; 456:152770. doi: 10.1016/j.tox.2021.152770
  141. Li Z, Tian F, Ban H, Xia S, Cheng L, Ren X, et al. Energy metabolism disorders and oxidative stress in the SH-SY5Y cells following M2.5 air pollution exposure. Toxicol Lett. 2022; 369:25–33.
  142. Yuan J, Mo L, Mo Y, Zhang Y, Zhang Y, Zhang Q. A protective role of autophagy in fine airborne particulate matter-induced apoptosis in LN-229 cells. Toxicology. 2022; 477:153271. doi: 10.1016/j.tox.2022.153271
  143. Jiang M, Li D, Piao J, Li Y, Chen L, Li J, et al. Nrf2 modulated the restriction of lung function via impairment of intrinsic autophagy upon real-ambient PM2.5 exposure. J Hazard Mater. 2021; 408:124903. doi: 10.1016/j.jhazmat.2020.124903
  144. Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, et al. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol. 2018; 15:44. doi: 10.1186/s12989-018-0281-1
  145. Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, et al. M2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro. 2013; 27:1762–70.
  146. Qiu YN, Wang GH, Zhou F, Hao JJ, Tian L, Guan LF, et al. M2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf. 2019; 167:178–87.
  147. De Nys S, Duca RC, Nawrot T, Hoet P, Van Meerbeek B, Van Landuyt KL, et al. Temporal variability of global DNA methylation and hydroxymethylation in buccal cells of healthy adults: association with air pollution. Environ Int. 2018; 111:301–8.
  148. Lovinsky-Desir S, Jung KH, Jezioro JR, Torrone DZ, de Planell-Saguer M, Yan B, et al. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin Epigenetics. 2017; 9:65. doi: 10.1186/s13148-017-0364-0
  149. Bai J, Tang L, Luo Y, Han Z, Li C, Sun Y, et al. Vitamin B complex blocks the dust fall M2.5 -induced acute lung injury through DNA methylation in rats. Environ Toxicol. 2023; 38:403–14.
  150. Wu M, Jiang M, Ding H, Tang S, Li D, Pi J, et al. Nrf2-/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM2.5 exposure. Front Genet. 2023; 14:1144903. doi: 10.3389/fgene.2023.1144903
  151. Zhou W, Tian D, He J, Wang Y, Zhang L, Cui L, et al. Repeated M2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget. 2016; 7:20691–703.
  152. Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, et al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis. 2011; 17:1955–65.
  153. Legaki E, Gazouli M. Influence of environmental factors in the development of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther. 2016; 7:112–25.
  154. Karatzas PS, Mantzaris GJ, Safioleas M, Gazouli M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine (Baltimore). 2014; 93:e309. doi: 10.1097/MD.0000000000000309
  155. Li Z, Liang D, Ebelt S, Gearing M, Kobor MS, Konwar C, et al. Differential DNA methylation in the brain as potential mediator of the association between traffic-related M2.5 and neuropathology markers of Alzheimer's disease. Alzheimers Dement. 2024; 20:2538–51.
  156. Shen Y, Liu C, Yang T, Tang Y, Shen Y, Gu Y. Transcriptome characterization of human gingival mesenchymal and periodontal ligament stem cells in response to electronic-cigarettes. Environ Pollut. 2023; 323:121307. doi: 10.1016/j.envpol.2023.121307
  157. Mourão CF, Shibli JA. What is the impact of e-cigarettes on periodontal stem cells as revealed by transcriptomic analyses? Evid Based Dent. 2023; 24:168–9.
  158. Han X, Tian M, Shliaha PV, Zhang J, Jiang S, Nan B, et al. Real-world particulate matters induce lung toxicity in rats fed with a high-fat diet: evidence of histone modifications. J Hazard Mater. 2021; 416:126182. doi: 10.1016/j.jhazmat.2021.126182
  159. Jiang Y, Zhao Y, Wang Q, Chen H, Zhou X. Fine particulate matter exposure promotes M2 macrophage polarization through inhibiting histone deacetylase 2 in the pathogenesis of chronic obstructive pulmonary disease. Ann Transl Med. 2020; 8:1303. doi: 10.21037/atm-20-6653
  160. Chen S, Wu M, Xiong Z, Huang J, Lv Y, Li Y, et al. Myeloid-specific SIRT6 deletion protects against particulate matter (M2.5)-induced airway inflammation. Int J Chron Obstruct Pulmon Dis. 2023; 18:1135–44.
  161. Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, et al. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution. Environ Toxicol Pharmacol. 2016; 42:170–5.
  162. Hou T, Liao J, Zhang C, Sun C, Li X, Wang G. Elevated expression of miR-146, miR-139 and miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice. Int Immunopharmacol. 2018; 54:68–77.
  163. Park S, Kim M, Park M, Jin Y, Lee SJ, Lee H. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. J Hazard Mater. 2023; 445:130466. doi: 10.1016/j.jhazmat.2022.130466
  164. Liu L, Wan C, Zhang W, Guan L, Tian G, Zhang F, et al. MiR-146a regulates M1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells. Environ Toxicol. 2018; 33:743–51.
  165. Jiang P, Hao S, Xie L, Xiang G, Hu W, Wu Q, et al. LncRNA NEAT1 contributes to the acquisition of a tumor like-phenotype induced by PM 2.5 in lung bronchial epithelial cells via HIF-1α activation. Environ Sci Pollut Res Int. 2021; 28:43382–93.
  166. Fu Y, Li B, Yun J, Xu J, Meng Q, Li X, et al. lncRNA SOX2-OT ceRNA network enhances the malignancy of long-term PM2.5-exposed human bronchial epithelia. Ecotoxicol Environ Saf. 2021; 217:112242. doi: 10.1016/j.ecoenv.2021.112242
  167. Ning J, Li P, Zhang B, Han B, Su X, Wang Q, et al. miRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5. Environ Pollut. 2019; 254:112875. doi: 10.1016/j.envpol.2019.07.043
  168. Sanchez B, Zhou X, Gardiner AS, Herbert G, Lucas S, Morishita M, et al. Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Part Fibre Toxicol. 2020; 17:29. doi: 10.1186/s12989-020-00361-3
  169. Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world M2.5 exposure. J Environ Sci (China). 2022; 122:25–40.
  170. Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X, et al. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration. Part Fibre Toxicol. 2017; 14:34. doi: 10.1186/s12989-017-0215-3
  171. Chao MW, Yang CH, Lin PT, Yang YH, Chuang YC, Chung MC, et al. Exposure to M2.5 causes genetic changes in fetal rat cerebral cortex and hippocampus. Environ Toxicol. 2017; 32:1412–25.
DOI: https://doi.org/10.2478/abm-2025-0002 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 21 - 35
Published on: Feb 28, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Sisi Chen, Wenlei Yu, Yiwen Shen, Linjie Lu, Xiangyong Meng, Jun Liu, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution 4.0 License.