References
- Keyes KM, Gary D, O’Malley PM, Hamilton A, Schulenberg J. Recent increases in depressive symptoms among US adolescents: trends from 1991 to 2018. Soc Psychiatry Psychiatr Epidemiol. 2019; 54:987–96.
- Grazioli VS, Bagge CL, Studer J, Bertholet N, Rougemont-Bücking A, Mohler-Kuo M, et al. Depressive symptoms, alcohol use and coping drinking motives: examining various pathways to suicide attempts among young men. J Affect Disord. 2018; 232: 243–51.
- Mitchell AJ, Vaze A, Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet. 2009; 374:609–19.
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Association; 2013.
- Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961; 4:561–71.
- Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L. Cognitive impairment in major depression. Eur J Pharmacol. 2010; 626:83–6.
- Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007; 62:429–37.
- Shim M, Im CH, Kim YW, Lee SH. Altered cortical functional network in major depressive disorder: a resting-state electroencephalogram study. Neuroimage Clin. 2018; 19:1000–7.
- Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012; 85:206–11.
- Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed. 2013; 109:339–45.
- Mumtaz W, Ali SSA, Yasin MAM, Malik AS. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med Biol Eng Comput. 2018; 56:233–46.
- Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: a new perspective. Neurocomputing. 2018; 300:70–9.
- Cavanagh JF, Napolitano A, Wu C, Mueen A. The patient repository for EEG data + computational tools (PRED+CT). Front Neuroinform. 2017; 11:67. doi: 10.3389/fninf.2017.00067
- Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015; 351:h5527. doi: 10.1136/bmj.h5527
- Jafarifarmand A, Badamchizadeh MA, Khanmohammadi S, Nazari MA, Tazehkand BM. A new self-regulated neuro-fuzzy framework for classification of EEG signals in motor imagery BCI. IEEE Trans Fuzzy Syst. 2017; 26:1485–97.
- Maitín AM, García-Tejedor AJ, Muñoz JPR. Machine learning approaches for detecting Parkinson’s disease from EEG analysis: a systematic review. Appl Sci. 2020; 10:8662. doi: 10.3390/app10238662
- Remeseiro B, Bolon-Canedo V. A review of feature selection methods in medical applications. Comput Biol Med. 2019; 112:103375. doi: 10.1016/j.compbiomed.2019.103375
- Kuremoto T, Baba Y, Obayashi M, Mabu S, Kobayashi K. Enhancing EEG signals recognition using ROC curve. J Rob Networking Artif Life. 2018; 4:283–6.
- Knott V, Mahoney C, Kennedy S, Evans K. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 2001; 106:123–40.
- Nofzinger EA, Price JC, Meltzer CC, Buysse DJ, Villemagne VL, Miewald JM, et al. Towards a neurobiology of dysfunctional arousal in depression: the relationship between beta EEG power and regional cerebral glucose metabolism during NREM sleep. Psychiatry Res. 2000; 98:71–91.
- Fernández-Palleiro P, Rivera-Baltanás T, Rodrigues-Amorim D, Fernández-Gil S, Del Carmen Vallejo-Curto M, Álvarez-Ariza M, et al. Brainwaves oscillations as a potential biomarker for major depression disorder risk. Clin EEG Neurosci. 2020; 51:3–9.
- Lockwood PL, O’Nell KC, Apps MAJ. Anterior cingulate cortex: a brain system necessary for learning to reward others? PLoS Biol. 2020; 18:e3000735. doi: 10.1371/journal.pbio.3000735
- Ye T, Romero-Sosa JL, Rickard A, Aguirre CG, Wikenheiser AM, Blair HT, Izquierdo A. Theta oscillations in anterior cingulate cortex and orbitofrontal cortex differentially modulate accuracy and speed in flexible reward learning. Oxf Open Neurosci. 2023; 2:kvad005. doi: 10.1093/oons/kvad005
- Li P, Peng W, Li H, Holroyd CB. Electrophysiological measures reveal the role of anterior cingulate cortex in learning from unreliable feedback. Cogn Affect Behav Neurosci. 2018; 18: 949–63.
- MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011; 16:252–64.
- Li X, Jing Z, Hu B, Zhu J, Zhong N, Li M, et al. A resting-state brain functional network study in MDD based on minimum spanning tree analysis and the hierarchical clustering. Complexity. 2017; 2017:9514369. doi: 10.1155/2017/9514369
- Markovska-Simoska S, Pop-Jordanova N, Pop-Jordanov J. Inter- and intra-hemispheric EEG coherence study in adults with neuropsychiatric disorders. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2018; 39:5–19.
- McVoy M, Aebi ME, Loparo K, Lytle S, Morris A, Woods N, et al. Resting-state quantitative electroencephalography demonstrates differential connectivity in adolescents with major depressive disorder. J Child Adolesc Psychopharmacol. 2019; 29:370–7.
- Sauerwein HC, Lassonde M. Cognitive and sensori-motor functioning in the absence of the corpus callosum: neuropsychological studies in callosal agenesis and callosotomized patients. Behav Brain Res. 1994; 64:229–40.
- Genç E, Ocklenburg S, Singer W, Güntürkün O. Abnormal interhemispheric motor interactions in patients with callosal agenesis. Behav Brain Res. 2015; 293:1–9.
- Northam GB, Liégeois F, Tournier JD, Croft LJ, Johns PN, Chong WK, et al. Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm. Brain. 2012; 135(Pt 12):3781–98.
- Yao S, Becker B, Kendrick KM. Reduced inter-hemispheric resting state functional connectivity and its association with social deficits in autism. Front Psychiatry. 2021; 12:629870. doi: 10.3389/fpsyt.2021.629870
- Agcaoglu O, Miller R, Damaraju E, Rashid B, Bustillo J, Cetin MS, et al. Decreased hemispheric connectivity and decreased intra- and inter-hemisphere asymmetry of resting state functional network connectivity in schizophrenia. Brain Imaging Behav. 2018; 12:615–30.
- Ran S, Zuo Z, Li C, Yin X, Qu W, Tang Q, et al. Atrophic corpus callosum associated with altered functional asymmetry in major depressive disorder. Neuropsychiatr Dis Treat. 2020; 16: 1473–82.