Have a personal or library account? Click to login
TPH1 inhibits bladder tumorigenesis by targeting HIF-1α pathway in bladder cancer Cover

TPH1 inhibits bladder tumorigenesis by targeting HIF-1α pathway in bladder cancer

Open Access
|Sep 2024

References

  1. Global Burden of Disease Cancer Collaboration; Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2019; 5:1749–68.
  2. Blick C, Ramachandran A, Wigfield S, McCormick R, Jubb A, Buffa FM, et al. Hypoxia regulates FGFR3 expression via HIF-1α and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer. Br J Cancer. 2013; 109:50–9.
  3. Zhu J, Huang Z, Zhang M, Wang W, Liang H, Zeng J, et al. HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncol Lett. 2018; 15:3482–9.
  4. Xue M, Li X, Chen W. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein α by hypoxia inducible factor-1α in bladder transitional carcinoma cells. Mol Med Rep. 2015; 12:2121–7.
  5. Lu M, Ge Q, Wang G, Luo Y, Wang X, Jiang W, et al. CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α. Cell Death Dis. 2018; 9:1046. doi: 10.1038/s41419-018-1109-5
  6. McKinney J, Knappskog PM, Haavik J. Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem. 2005; 92:311–20.
  7. Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets. 2017; 21:167–80.
  8. Maffei ME. 5-Hydroxytryptophan (5-HTP): natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology. Int J Mol Sci. 2020; 22:181. doi: 10.3390/ijms22010181
  9. Amireault P, Sibon D, Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem Neurosci. 2013; 4:64–71.
  10. Del Colle A, Israelyan N, Gross Margolis K. Novel aspects of enteric serotonergic signaling in health and brain-gut disease. Am J Physiol Gastrointest Liver Physiol. 2020; 318:G130–43.
  11. Gautam J, Banskota S, Regmi SC, Ahn S, Jeon YH, Jeong H, et al. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol Cancer. 2016; 15:75. doi: 10.1186/s12943-016-0559-6
  12. Li T, Fu B, Zhang X, Zhou Y, Yang M, Cao M, et al. Overproduction of gastrointestinal 5-HT promotes colitis-associated colorectal cancer progression via enhancing NLRP3 inflammasome activation. Cancer Immunol Res. 2021; 9:1008–23.
  13. Kim WT, Yun SJ, Yan C, Jeong P, Kim YH, Lee IS, et al. Metabolic pathway signatures associated with urinary metabolite biomarkers differentiate bladder cancer patients from healthy controls. Yonsei Med J. 2016; 57:865–71.
  14. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014; 11:783–4.
  15. Li SZ, Ren JW, Fei J, Zhang XD, Du RL. Cordycepin induces Bax-dependent apoptosis in colorectal cancer cells. Mol Med Rep. 2019; 19:901–8.
  16. Li Y, Zhao X, Tang H, Zhong Z, Zhang L, Xu R, et al. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells. Urol Int. 2012; 88:95–101.
  17. Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003; 66:1673–80.
  18. Miao B, Wei C, Qiao Z, Han W, Chai X, Lu J, et al. eIF3a mediates HIF1α-dependent glycolytic metabolism in hepatocellular carcinoma cells through translational regulation. Am J Cancer Res. 2019; 9:1079–90.
  19. Liu Y, Zhou N, Zhou L, Wang J, Zhou Y, Zhang T, et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. Nat Immunol. 2021; 22:358–69.
  20. Nakagawa H, Ueda T, Ito S, Shiraishi T, Taniguchi H, Kayukawa N, et al. Androgen suppresses testicular cancer cell growth in vitro and in vivo. Oncotarget. 2016; 7:35224–32.
  21. Ryu D, Ryoo IG, Kwak MK. Overexpression of CD44 standard isoform upregulates HIF-1α signaling in hypoxic breast cancer cells. Biomol Ther (Seoul). 2018; 26:487–93.
  22. Lima L, Gaiteiro C, Peixoto A, Soares J, Neves M, Santos LL, Ferreira JA. Reference genes for addressing gene expression of bladder cancer cell models under hypoxia: a step towards transcriptomic studies. PLoS One. 2016; 11:e0166120. doi: 10.1371/journal.pone.0166120
  23. Chen MC, Lee CF, Huang WH, Chou TC. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol. 2013; 85:1278–87.
  24. Cesário JM, Brito RB, Malta CS, Silva CS, Matos YS, Kunz TC, et al. A simple method to induce hypoxia-induced vascular endothelial growth factor-A (VEGF-A) expression in T24 human bladder cancer cells. In Vitro Cell Dev Biol Anim. 2017; 53:272–6.
  25. Zhan Y, Liu Y, Lin J, Fu X, Zhuang C, Liu L, et al. Synthetic Tet-inducible artificial microRNAs targeting β-catenin or HIF-1α inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Sci Rep. 2015; 5:16177. doi: 10.1038/srep16177
  26. Su X, Li G, Liu W. The long noncoding RNA cancer susceptibility candidate 9 promotes nasopharyngeal carcinogenesis via stabilizing HIF1α. DNA Cell Biol. 2017; 36:394–400.
  27. Qiu H, Chen F, Chen M. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis. Biol Open. 2019; 8:bio042937. doi: 10.1242/bio.042937
  28. Byun Y, Choi YC, Jeong Y, Lee G, Yoon S, Jeong Y, et al. MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells. Cell Mol Biol Lett. 2019; 24:28. doi: 10.1186/s11658-019-0152-2
  29. Wu J, Chai H, Xu X, Yu J, Gu Y. Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer. Mol Oncol. 2020; 14:1397–409.
  30. Wang C, Tao W, Ni S, Chen Q. SENP1 interacts with HIF1α to regulate glycolysis of prostatic carcinoma cells. Int J Biol Sci. 2019; 15:395–403
DOI: https://doi.org/10.2478/abm-2024-0023 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 171 - 179
Published on: Sep 20, 2024
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 Jianwei Ren, Zhiting Mo, Xia Deng, Minghui Ren, Hailong Ren, Jie Jin, Huihui Zhang, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution 4.0 License.