References
- More RB, Haubold AD, Bokros JC. Pyrolytic carbon for long-term medical implants. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons J, editors, Biomaterials science: an introduction to materials in medicine 3rd ed. Cambridge, USA: Elsevier Inc., Academic Press; 2013 p. 209–222.
- Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008; 11:18–25.
- Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40:363–408.
- Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986; 205:299–308.
- Li Y, Chen S-K, Li L, Qin L, Wang X-L, Lai Y-X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Transl. 2015; 3:95–104.
- Bao CLM, Teo EY, Chong MSK, Liu Y, Choolani M, Chan JKY. Advances in bone tissue engineering. In: Andrades JA, editor. Regenerative medicine and tissue engineering. Rijeka, Croatia: InTech; 2013, p. 599–614.
- Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev. 2015; 84:1–29.
- Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000; 21:2529–43.
- O’Brien FJ. Biomaterials and scaffolds for tissue engineering. Mater Today. 2011; 14:88–95.
- Jiménez-Holguín J, Sánchez-Salcedo S, Vallet-Regí M, Salinas AJ. Development and evaluation of copper-containing mesoporous bioactive glasses for bone defects therapy. Microporous Mesoporous Mater. 2020; 308:110454. doi: 10.1016/j.micromeso.2020.110454
- Schumacher M, Habibovic P, van Rijt S. Mesoporous bioactive glass composition effects on degradation and bioactivity. Bioact Mater. 2021; 6:1921–31.
- Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF. Bioactive glass in tissue engineering. Acta Biomater. 2011; 7:2355–73.
- Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011; 32:2757–74.
- Lakhkar NJ, Lee I-H, Kim H-W, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev. 2013; 65:405–20.
- Kargozar S, Montazerian M, Hamzehlou S, Kim HW, Baino F. Mesoporous bioactive glasses: promising platforms for antibacterial strategies. Acta Biomater. 2018; 81:1–19.
- Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater. 2011; 21:1058–63.
- Gerhardt L-C, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010; 3:3867–910.
- Anand A, Lalzawmliana V, Kumar V, Das P, Devi KB, Maji AK, et al. Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses. J Mech Behav Biomed Mater. 2019; 89:89–98.
- Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27:2907–15.
- Zhu Y, Zhu M, He X, Zhang J, Tao C. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomater. 2013; 9:6723–31.
- Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020; 18:e3000410. doi: 10.1371/journal.pbio.3000410
- Jung I, Lim H, Lee E, Lee J, Jung U, Choi S. Comparative analysis of carrier systems for delivering bone morphogenetic proteins. J Periodontal Implant Sci. 2015; 45:136–44.
- Araujo AS, Fernandes AB, Maciel JV, Netto Jde N, Bolognese AM. New methodology for evaluating osteoclastic activity induced by orthodontic load. J Appl Oral Sci. 2015; 23:19–25.
- Erdfelder E, Faul F, Buchner A. GPOWER: a general power analysis program. Behav Res Methods Instrum Comput. 1996; 28:1–11.
- Li X, Wang X, He D, Shi J. Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Cu) bioactive glasses/composites. Acta Biomater. 2011; 7:3638–44.
- Ma J, Wang CZ, Huang BX, Zhao XC, Chen CZ, Yu HJ. In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by sol-gel method. Mater Technol. 2021; 36:420–9.
- Tas AC. X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr. 2001; 16:102–6.
- Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M. Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 2011; 7:3452–8.
- Koohkan R, Hooshmand T, Tahriri M, Mohebbi-Kalhori D. Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceram Int. 2018; 44:2390–9.
- Babu MM, Prasad, PS, Rao PV, Govindan NP, Singh RK, Kim HW, Veeraiah N. Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: impact of Ti4+ on physico-mechanical and in vitro bioactivity. Ceram Int. 2019; 45:23715–27.
- Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001; 61:1189–224.
- Lalzawmliana V, Anand A, Roy M, Kundu B, Nandi SK. Mesoporous bioactive glasses for bone healing and biomolecules delivery. Mater Sci Eng C Mater Biol Appl. 2020; 106:110180. doi: 10.1016/j.msec.2019.110180
- Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005; 36 Suppl 3:S20–7.
- Gu Y, Huang W, Rahaman MN, Day DE. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater. 2013; 9:9126–36.
- Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE, et al. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One. 2014; 9:e113319. doi: 10.1371/journal.pone.0113319
- Hu G. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 1998; 69:326–35.
- Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Hear Circ Physiol. 2002; 282:H1821–7.
- Cordioli G, Mazzocco C, Schepers E, Brugnolo E, Majzoub Z. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clinical and histological findings. Clin Oral Implants Res. 2001; 12:270–8.
- Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008; 473:201–9.
- Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014; 29:1522–30.