Have a personal or library account? Click to login
Primary culture of chondrocytes after collagenase IA or II treatment of articular cartilage from elderly patients undergoing arthroplasty Cover

Primary culture of chondrocytes after collagenase IA or II treatment of articular cartilage from elderly patients undergoing arthroplasty

Open Access
|Apr 2021

References

  1. Aspden RM, Saunders FR. Osteoarthritis as an organ disease: from the cradle to the grave. Eur Cell Mater. 2019; 37:74–87.
  2. Croia C, Bursi R, Sutera D, Petrelli F, Alunno A, Puxeddu I. One year in review 2019: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2019; 37:347–57.
  3. Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 2014; 39:25–32.
  4. Mayne R. Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum. 1989; 32:241–46.
  5. Hagiwara H, Schröter-Kermani C, Merker HJ. Localization of collagen type VI in articular cartilage of young and adult mice. Cell Tissue Res. 1993; 272:155–60.
  6. Evans CH. Catering to chondrocytes. Sci Transl Med. 2018; 10:eaav7043. doi: 10.1126/scitranslmed.aav7043
  7. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis — an untreatable disease? Nat Rev Drug Discov. 2005; 4:331–44.
  8. Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003; 55:1531–46.
  9. Miller EJ, Harris EJ, Chung E, Finch JJ, McCroskery PA, Butler WT. Cleavage of Type II and III collagens with mammalian collagenase: site of cleavage and primary structure at the NH2-terminal portion of the smaller fragment released from both collagens. Biochemistry. 1976; 15:787–92.
  10. Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA. Age dependence of cellular properties of human septal cartilage: implications for tissue engineering. Arch Otolaryngol Head Neck Surg. 2001; 127:1248–52.
  11. Tallheden T, van der Lee J, Brantsing C, Månsson JE, Sjögren-Jansson E, Lindahl A. Human serum for culture of articular chondrocytes. Cell Transplant. 2005; 14:469–79.
  12. Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, et al. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cart. 2007; 15:48–58.
  13. Jakob M, Démarteau O, Schäfer D, Stumm M, Heberer M, Martin I. Enzymatic digestion of adult human articular cartilage yields a small fraction of the total available cells. Connect Tissue Res. 2003; 44:173–80.
  14. Dunham BP, Koch RJ. Basic fibroblast growth factor and insulinlike growth factor I support the growth of human septal chondrocytes in a serum-free environment. Arch Otolaryngol Head Neck Surg. 1998; 124:1325–30.
  15. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994; 331:889–95.
  16. Oseni AO, Butler PE, Seifalian AM. Optimization of chondrocyte isolation and characterization for large-scale cartilage tissue engineering. J Surg Res. 2013; 181:41–8.
  17. Matsushita O, Jung C-M, Katayama S, Minami J, Takahashi Y, Okabe A. Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J Bacteriol. 1999; 181:923–33.
  18. Bond MD, Van Wart HE. Purification and separation of individual collagenases of Clostridium histolyticum using red dye ligand chromatography. Biochemistry-US. 1984; 23:3077–85.
  19. Ding L, Buckwalter JA, Martin JA. DAMPs synergize with cytokines or fibronectin fragment on inducing chondrolysis but lose effect when acting alone. Mediators Inflamm. 2017:2642549. doi: 10.1155/2017/2642549
  20. Yoshihara K, Matsushita O, Minami J, Okabe A. Cloning and nucleotide sequence analysis of the colH gene from Clostridium histolyticum encoding a collagenase and a gelatinase. J Bacteriol. 1994; 176:6489–96.
  21. Sweeney PJ, Walker JM. Pronase (EC 3.4.24.4). Methods Mol Biol. 1993; 16:271–6.
  22. Narahashi Y, Yanagita M. Studies on proteolytic enzymes (pronase) of Streptomyces griseus K-1. I. Nature and properties of the proteolytic enzyme system. J Biochem. 1967; 62:633–41.
  23. Diaz-Romero J, Gaillard JP, Grogan SP, Nesic D, Trub T, Mainil-Varlet P. Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol. 2005; 202:731–42.
  24. Yonenaga K, Nishizawa S, Nakagawa T, Fujihara Y, Asawa Y, Hikita A, et al. Optimal conditions of collagenase treatment for isolation of articular chondrocytes from aged human tissues. Regen Ther. 2017; 6:9–14.
  25. Archer CW, Francis-West P. The chondrocyte. Int J Biochem Cell Biol. 2003; 35:401–4.
  26. Ding L, Zampogna B, Vasta S, Jang KW, De Caro F, Martin JA, Amendola A. Why do osteochondral allografts survive? Comparative analysis of cartilage biochemical properties unveils a molecular basis for durability. Am J Sports Med. 2015; 43:2459–68.
  27. Stockwell RA. The cell density of human articular and costal cartilage. J Anat. 1967; 101:753–63.
DOI: https://doi.org/10.2478/abm-2021-0011 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 91 - 99
Published on: Apr 30, 2021
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Liuliu Xiong, Meng Cui, Ziye Zhou, Minchen Wu, Quanming Wang, Haiyan Song, Lei Ding, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.