Have a personal or library account? Click to login

Modeling Teachers’ Diagnostic Judgments by Bayesian Reasoning and Approximative Heuristics

Open Access
|Jul 2022

References

  1. Böcherer-Linder, K., & Eichler, A. (2017). The impact of visualizing nested sets. An empirical study on tree diagrams and unit squares. Frontiers in psychology 7, 241.
  2. Cohen, A. L., & Staub, A. (2015). Within-subject consistency and between-subject variability in Bayesian reasoning strategies. Cognitive Psychology, 81, 26–47.10.1016/j.cogpsych.2015.08.001
  3. De Finetti, B. (2017). Theory of Probability: A Critical Introductory Treatment. New York, NY: John Wiley & Sons.10.1002/9781119286387
  4. Edwards, W. (1968). Conservatism in human information processing. In B. Kleinmuntz (Ed.), Formal Representation of Human Judgment (pp. 17-52). New York, NY: Wiley.
  5. Gallistel, C.R. (2011). Mental magnitudes. In S. Dehaene, E.M. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 3-12). London: Elsevier.
  6. Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: models of bounded rationality. Psychological Review, 103(4), 650.10.1037/0033-295X.103.4.650
  7. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological. Review, 102, 684–704.10.1037/0033-295X.102.4.684
  8. Heitzman, N., Seidel, T., Opitz, A., Hetmanek, A., Wecker, C., Fischer, M., & Fischer, F. (2019). Facilitating Diagnostic Competences in Simulations: A Conceptual Framework and a Research Agenda for Medical and Teacher Education. Frontline Learning Research, 7(4), 1–24.10.14786/flr.v7i4.384
  9. Herppich, S., Praetorius, K., Förster, N., Glogger-Frey, I., Karst, K., Leutner, D., Behrmann, L., Böhmer, M., Ufer, S., Klug, J., Hetmanek, A., Ohle, A., Böhmer, I., Karing, C., Kaiser, J., &
  10. Herppich, S., Wittwer, J., Nückles, M., & Renkl, A. (2016). Expertise amiss: Interactivity fosters learning but expert tutors are less interactive than novice tutors. Instructional Science, 44, 205–219.10.1007/s11251-015-9363-8
  11. Hoppe, T., Renkl, A., & Rieß, W. (2020). Förderung von unterrichtsbegleitendem Diagnostizieren von Schülervorstellungen durch Video und Textvignetten. Unterrichtswissenschaft, 48, 573–597.10.1007/s42010-020-00075-7
  12. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.
  13. Jøsang, A. (2016). Generalising Bayes’ theorem in subjective logic. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) (pp.462–469). Baden-Baden.10.1109/MFI.2016.7849531
  14. Juslin, P., Lindskog, M., & Mayerhofer, B. (2015). Is there some-thing special with probabilities? Insight vs. computational ability in multiple risk combination. Cognition, 136, 282–303.10.1016/j.cognition.2014.11.041
  15. Juslin, P., Nilsson, H., & Winman, A. (2009). Probability theory, not the very guide of life. Psychological Review, 116(4), 856–874.10.1037/a0016979
  16. Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions. Psychological Review, 103(3), 582–591.10.1037/0033-295X.103.3.582
  17. Khemlani, S. S., Lotstein, M., & Johnson‐Laird, P. N. (2015). Naive probability: Model‐based estimates of unique events. Cognitive Science, 39(6), 1216–1258.10.1111/cogs.12193
  18. Krolak-Schwerdt, S., Pitten Cate, I. M., & Hörstermann, T. (2018). Teachers’ judgments and decision-making: Studies concerning the transition from primary to secondary education and their implications for teacher education. In Assessment of Learning Outcomes in Higher Education (pp. 73–101). Springer, Cham.10.1007/978-3-319-74338-7_5
  19. Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From ‘sense of number’ to ‘sense of magnitude’ – the role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, E164.10.1017/S0140525X16000960
  20. Leuders, T., & Loibl, K. (2020). Processing probability information in non-numerical settings – teachers’ bayesian and non-bayesian strategies during diagnostic judgment. Frontiers in Psychology, 11, 678.10.3389/fpsyg.2020.00678
  21. Loibl, K., & Leuders, L. (2020). “Take the middle” – Averaging prior and evidence as effective heuristic in bayesian reasoning. In S. Denison., M. Mack, Y. Xu, & B.C. Armstrong (Eds.), Proceedings of the 42nd Annual Conference of the Cognitive Science Society (pp. 1764–1770). Cognitive Science Society.
  22. Loibl, K., Leuders, T., & Dörfler, T. (2020). A framework for explaining teachers’ diagnostic judgements by cognitive modeling (DiaCoM). Teaching and Teacher Education, 91, 103059.10.1016/j.tate.2020.103059
  23. Lopes, L. L. (1985). Averaging rules and adjustment processes in Bayesian inference. Bulletin of the Psychonomic Society, 23, 509–512.10.3758/BF03329868
  24. Mandel, D. R. (2014). The psychology of bayesian reasoning. Frontiers in Psychology, 5, 1144.10.3389/fpsyg.2014.01144
  25. Martignon, L., Vitouch, O., Takezawa, M., & Forster, M. R. (2003). Naive and yet enlightened: From natural frequencies to fast and frugal decision trees. In D. Hardman & L. Macchi (Eds.), Thinking: Psychological perspective on reasoning, judgment, and decision making (pp. 189–211). Chichester, UK: Wiley.
  26. Nickerson, R. S. (1999). How we know—and sometimes misjudge—what others know: Imputing one’s own knowledge to others. Psychological Bulletin, 125, 737–759.10.1037/0033-2909.125.6.737
  27. Phelps-Gregory, C. M., & Spitzer, S. M. (2018). Developing prospective teachers’ ability by classroom intervention: Replicating a classroom intervention. In T. Leuders, J. Leuders, & K. Philipp (Eds.), Diagnostic Competence of Mathematics Teachers: Unpacking a complex construct in teacher education and teacher practice (pp. 223–240). New York: Springer.
  28. Richter-Gebert, J., & Kortenkamp, U. H. (2000). User manual for the interactive geometry software cinderella. Springer Science & Business Media.10.1007/978-3-642-58318-6
  29. Shanteau, J. (1975). Averaging versus multiplying combination rules of inference judgement. Acta Psychologica, 39, 83–89.10.1016/0001-6918(75)90023-2
  30. Simon, H. A. (1995). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99–118.10.2307/1884852
  31. Südkamp, A. (2018). Teachers’ assessment competence: Integrating knowledge-, process-, and product-oriented approaches into a competence-oriented conceptual model. Teaching and Teacher Education, 76, 181–193.10.1016/j.tate.2017.12.001
  32. Südkamp, A., Kaiser, J., & Möller, J. (2012). Accuracy of teachers’ judgments of students’ academic achievement: A meta-analysis. Journal of educational psychology, 104(3), 743.10.1037/a0027627
  33. Sundh, J. (2019). The Cognitive Basis of Joint Probability Judgments. Processes, Ecology, and Adaption. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences, 166. Uppsala: Acta Universitatis Upsaliensis.
  34. Villejoubert, G., & Mandel, D. R. (2002). The inverse fallacy: an account of deviations from Bayes’ theorem and the additivity principle. Memory & Cognition, 30(2), 171–178.10.3758/BF03195278
  35. Weber, P., Binder, K., & Krauss, S. (2018). Why can only 24% solve Bayesian reasoning problems in natural frequencies: Frequency phobia in spite of probability blindness. Frontiers in Psychology, 9, 1833.10.3389/fpsyg.2018.01833
  36. Witzigmann, St., Sachse, St. (2021). Diagnostic competencies of prospective teachers of French as a foreign language: judgement of oral language samples. RISTAL, 4, 70–86.
  37. Zhu, L., & Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of representation in mental computation. Cognition, 98, 287–308.10.1016/j.cognition.2004.12.003
DOI: https://doi.org/10.23770/rt1844 | Journal eISSN: 2616-7697
Language: English
Page range: 88 - 108
Published on: Jul 11, 2022
Published by: Gesellschaft für Fachdidaktik (GfD e.V.)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2022 Katharina Loibl, Timo Leuders, published by Gesellschaft für Fachdidaktik (GfD e.V.)
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.