Adjadj, M., Aliouche, Y., & Meksaouine, M. (2021). Three-dimensional non-linear analysis based on the temporal evolution of an rCC dam including the alluvium effect. GeoScience Engineering, 67(1), 11–20. https://doi.org/10.35180/gse-2021-0047
Bayraktar, A., Sevim, B., & Can Altunişik, A. (2011). Finite element model updating effects on nonlinear seismic response of arch dam reservoir foundation systems. Finite Elements in Analysis and Design, 47(2), 85–97. https://doi.org/10.1016/j.finel.2010.09.005
Das, S. K., Mandal, K. K., & Niyogi, A. G. (2023). Finite element-based direct coupling approach for dynamic analysis of dam–reservoir system. Innovative Infrastructure Solutions, 8(44), 1–15. https://doi.org/10.1007/s41062-022-01013-5
Ebrahimian, B. (2011). Numerical analysis of nonlinear dynamic behavior of earth dams. Frontiers of Architecture and Civil Engineering in China, 5(1), 24–40. https://doi.org/10.1007/s11709-010-0082-6
Enzell, J., Ulfberg, A., Sas, G., & Malm, R. (2021). Post-peak behavior of concrete dams based on nonlinear finite element analyses. Engineering Failure Analysis, 130, 105778. https://doi.org/10.1016/j.engfailanal.2021.105778
Haghani, M., Neya, B. N., Ahmadi, M. T., & Amiri, J. V. (2022). A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method. Engineering Failure Analysis, 132, 105835. https://doi.org/10.1016/j.engfailanal.2021.105835
He, Q., Gu, C., Valente, S., Zhao, E., Liu, X., & Yuan, D. (2022). Multi-arch dam safety evaluation based on statistical analysis and numerical simulation. Scientific Reports, 12(1), 1–19. https://doi.org/10.1038/s41598-022-13073-9
Liang, C., Chen, J., Xu, Q., & Li, J. (2023). Evaluation of nonlinear response biases of arch dams due to amplitude scaling via three-component record selection based on conditional spectra. Engineering Structures, 287, 116169. https://doi.org/10.1016/j.engstruct.2023.116169
Li, Z. Y., Hu, Z. Q., Lin, G., & Li, J. B. (2022). A scaled boundary finite element method procedure for arch dam-water-foundation rock interaction in complex layered half-space. Computers and Geotechnics, 141, 104524. https://doi.org/10.1016/j.compgeo.2021.104524
Li, Y., Zhao, E., Zhang, J., Shao, C., & Li, Z. (2024). Hybrid reliability evaluation of arch dam during long-term service with multi-dimensional parallelepiped convex model. Engineering Failure Analysis, 157, 107937. https://doi.org/10.1016/j.engfailanal.2023.107937
Lyu, W., Zhang, L., Yang, B., & Chen, Y. (2021). Analysis of stability of the Baihetan arch dam based on the comprehensive method. Bulletin of Engineering Geology and the Environment, 80, 1219–1232. https://doi.org/10.1007/s10064-020-02009-0
Majidi, N., riahi, H. T., Zandi, S. M., & Hajirasouliha, I. (2023). Development of practical down-sampling methods for nonlinear time history analysis of complex structures. Soil Dynamics and Earthquake Engineering, 175, 108247. https://doi.org/10.1016/j.soildyn.2023.108247
Ningthoukhongjam, S. S., & Singh, K. D. (2021). Analysis of mid-rise moment resisting steel frames by Nonlinear Time History Analysis using Force Analogy Method. Journal of The Institution of Engineers (India): Series A, 102, 901–918. https://doi.org/10.1007/s40030-021-00577-2
Roësset, J. M. (2007). Review of dynamics of structures: theory and applications to earthquake engineering, Third Edition, by Anil K. Chopra. Journal of Structural Engineering, 133(5), 752–752. https://doi.org/10.1061/(asce)0733-9445(2007)133:5(752)
Sarkar, A., Ghodke, S., & Bagchi, A. (2024). Performance of 2D-spectral finite element method in dynamic analysis of concrete gravity dams. Structures, 59, 105770. https://doi.org/10.1016/j.istruc.2023.105770
Saxena, S., & Patel, M. (2023). Evaluating dynamic behaviour of a concrete dam using modal analysis. Materials Today: Proceedings, 93(P3), 296–301. https://doi.org/10.1016/j.matpr.2023.07.259
Sharma, A., & Nallasivam, K. (2023). Static analysis of a concrete gravity dam using the finite element technique. Asian Journal of Civil Engineering, 24, 2939–2957. https://doi.org/10.1007/s42107-023-00686-2
Shen, Y. (2022). Stability analysis of high slope based on MIDAS GTS digital simulation. In 2022 World Automation Congress Proceedings (pp. 575–580). IEEE. https://doi.org/10.23919/WAC55640.2022.9934489
Suryadi, A., Wijaya, H., & Yuwono, A. (2023). Nonlinear Time History Pada Fondasi Tiang Pancang Dengan Program Midas Gts Nx. JMTS: Jurnal Mitra Teknik Sipil, 6(2), 383–392. https://doi.org/10.24912/jmts.v6i2.21674
Varghese, B., Saju, A., & John, S. (2014). Finite element analysis of arch dam. International Journal of Research in Engineering and Technology, 03(07), 180–193. https://doi.org/10.15623/ijret.2014.0307032
Yu, X., Zhou, Y. F., & Peng, S. Z. (2005). Stability analyses of dam abutments by 3D elasto-plastic finite-element method: A case study of Houhe gravity-arch dam in China. International Journal of Rock Mechanics and Mining Sciences, 42(3), 415–430. https://doi.org/10.1016/j.ijrmms.2005.01.001
Zewdu, A. (2020). Modeling the slope of embankment dam during static and dynamic stability analysis: a case study of Koga dam, Ethiopia. Modeling Earth Systems and Environment, 6, 1963–1979. https://doi.org/10.1007/s40808-020-00832-8
Zhang, M. Z., Wang, X. C., Liu, Y. L., Wang, J. T., Yi, K., Yan, J. H., & Chen, H. J. (2024). Effect of attached outlets on the dynamic response of arch dams. Engineering Structures, 302, 117392. https://doi.org/10.1016/j.engstruct.2023.117392