Have a personal or library account? Click to login
Comparative assessment of the physico-mechanical properties of crumb rubber concretes developed with natural and dune sands Cover

Comparative assessment of the physico-mechanical properties of crumb rubber concretes developed with natural and dune sands

By: Amar Mezidi and  Salem Merabti  
Open Access
|Dec 2025

References

  1. Abdelaleem, A., Moawad, M., El-Emam, H., Salim, H., & Sallam, H. E. M. (2024). Long term behavior of rubberized concrete under static and dynamic loads. Case Studies in Construction Materials, 20, e03087. https://doi.org/10.1016/j.cscm.2024.e03087
  2. Aghamohammadi, O., Mostofinejad, D., Mostafaei, H., & Abtahi, M. (2023). Mechanical properties and impact resistance of concrete pavement containing crumb rubber, International Journal of Geomechanics, 24(1), 04023211. https://doi.org/10.1061/IJGNAI.GMENG-7620
  3. Agrawal, D., Ansari, K., Waghe, U., Goel, M., Raut, S. P., Warade, H., Althaqafi, E., Islam, S. & Al-Sareji, O. J. (2025). Exploring the impact of pretreatment and particle size variation on properties of rubberized concrete. Scientific Reports, 15(1), 11394. https://doi.org/10.1038/s41598-025-96402-y
  4. Algerian Institute of Standardization [IANOR], (2013). Composition, specifications and criteria for common cements (NA 442).
  5. Al-Harthy, A. S., Halim, M. A., Taha, R., & Al-Jabri, K. S. (2007). The properties of concrete made with fine dune sand. Construction and Building Materials, 21(8), 1803–1808. https://doi.org/10.1016/j.conbuildmat.2006.05.053
  6. Assaggaf, R., Maslehuddin, M., Al-Osta, M. A., Al-Dulaijan, S. U., & Ahmad, S. (2022). Properties and sustainability of treated crumb rubber concrete. Journal of Building Engineering, 51, 104250. https://doi.org/10.1016/j.jobe.2022.104250
  7. Azunna, S. U., Aziz, F. N., Rashid, R. S., & Bakar, N. B. (2024). Review on the characteristic properties of crumb rubber concrete. Cleaner Materials, 12, 100237. https://doi.org/10.1016/j.clema.2024.100237
  8. Bulut, H. A., & Kandil, U. (2024). Mechanical properties of cement-based composites incorporating eco-friendly aggregate of waste rubber. Revista de la Construcción, 23(2), 246–270. http://dx.doi.org/10.7764/rdlc.23.2.246
  9. Du, T., Yang, Y., Cao, H., Si, N., Kordestani, H., Sktani, Z. D. I., Arab, A. & Zhang, C. (2024). Rubberized concrete: effect of the rubber size and content on static and dynamic behavior. Buildings, 14(6), 1541. https://doi.org/10.3390/buildings14061541
  10. Eisa, A. M., Tahwia, A. M., Osman, Y. A., & Elemam, W. E. (2025). Characteristics of bacteria based self healing rubberized concrete for sustainable and durable construction. Scientific Reports, 15(1), 1–16. https://doi.org/10.1038/s41598-025-97174-1
  11. Elbialy, S., Ibrahim, W., Mahmoud, S., Mamdouh, H., Ayash, N. M., & El-Kassas, A. (2024). Mechanical characteristics and structural performance of rubberized concrete: Experimental and analytical analysis. Case Studies in Construction Materials, 21, e03727. https://doi.org/10.1016/j.cscm.2024.e03727
  12. El-Nemr, A., & Shaaban, I. G. (2024). Assessment of special rubberized concrete types utilizing portable non-destructive tests. NDT, 2(3), 160–189. https://doi.org/10.3390/ndt2030010
  13. Elshazly, F. A., Mustafa, S. A., & Fawzy, H. M. (2020). Rubberized concrete properties and its structural engineering applications – An overview. The Egyptian International Journal of Engineering Sciences and Technology, 30, 1–11. https://doi.org/10.21608/eijest.2020.35823.1000
  14. Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J., & Youssf, O. (2021). Dynamic performance of rubberised concrete and its structural applications – An overview. Engineering Structures, 234, 111990. https://doi.org/10.1016/j.engstruct.2021.111990
  15. European Committee for Standardization [CEN]. (2016). Methods of testing cement. Part 1: Determination of strength (EN 196-1:2016).
  16. European Committee for Standardization [CEN]. (2019). Testing hardened concrete. Part 2: Making and curing specimens for strength tests (EN 12390-2:2019-07).
  17. European Committee for Standardization [CEN]. (2021). Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression (EN 12390-13:2021).
  18. Ge, J., Mubiana, G., Gao, X., Xiao, Y., & Du, S. (2024). Research on static mechanical properties of high-performance rubber concrete. Frontiers in Materials, 11, 1426979. https://doi.org/10.3389/fmats.2024.1426979
  19. Grinys, A., Balamurugan, M., Augonis, A., & Ivanauskas, E. (2021). Mechanical properties and durability of rubberized and glass powder modified rubberized concrete for whitetopping structures. Materials, 14(9), 2321. https://doi.org/10.3390/ma14092321
  20. Han, Y., Lv, Z., Bai, Y., Han, G., & Li, D. (2023). Experimental study on the mechanical properties of crumb rubber concrete after elevated temperature. Polymers, 15(14), 3102. https://doi.org/10.3390/polym15143102
  21. Haridharan, M. K., Murugan, R. B., Natarajan, C., & Muthukannan, M. (2017). Influence of waste tyre crumb rubber on compressive strength, static modulus of elasticity and flexural strength of concrete. IOP Conference Series: Earth and Environmental Science, 80(1), 012014. https://doi.org/10.1088/1755-1315/80/1/012014
  22. Hernández, E., Liu, R., Palermo, A., Chiaro, G., & Scott, A. (2021, October 14–16). Rubberised concrete: material characterisation and mechanical behaviour. NZ Concrete Conference, Rotorua, New Zealand.
  23. Hisbani, N., Shafiq, N., Shams, M. A., Farhan, S. A., & Zahid, M. (2025). Properties of concrete containing crumb rubber as partial replacement of fine aggregate – a review. Hybrid Advances, 10, 100481. https://doi.org/10.1016/j.hybadv.2025.100481
  24. Kevin, B., Sarker, P. K., & Madhavan, M. K. (2025). Performance assessment and microstructural characterization of combined surface, chemical and polymer treated crumb rubber concrete. Scientific Reports, 15(1), 15853. https://doi.org/10.1038/s41598-025-97189-8
  25. Li, D., Mills, J. E., Benn, T., Ma, X., Gravina, R., & Zhuge, Y. (2016). Review of the performance of high-strength rubberized concrete and its potential structural applications. Advances in Civil Engineering Materials, 5(1), 149–166. https://doi.org/10.1520/ACEM20150026
  26. Liu, H., Wang, X., Jiao, Y., & Sha, T. (2016). Experimental investigation of the mechanical and durability properties of crumb rubber concrete. Materials, 9(3), 172. https://doi.org/10.3390/ma9030172
  27. Lu, Y., Li, C., Zhang, X., Huang, X., & Zhao, Z. (2022). A workability characterization of innovative rubber concrete as a grouting material. Materials, 15(15), 5319. https://doi.org/10.3390/ma15155319
  28. Merabti, S., Kenai, S., Belarbi, R., & Khatib, J. (2021). Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Construction and Building Materials, 272, 121923. https://doi.org/10.1016/j.conbuildmat.2020.121923
  29. Mezidi, A., Merabti, S., Benyamina, S., & Sadouki, M. (2023). Effect of substituting white cement with ceramic waste powders (CWP) on the performance of a mortar based on crushed sand. Advances in Materials Science, 23(4), 123–133. https://doi.org/10.2478/adms-2023-0026
  30. Mezidi, A., Merabti, S., Guelmine, L., & Meziani, B. (2025). Effect of crumb rubber on the fresh and hardened properties of dune sand concrete. Advances in Materials Science, 25(2), 5–16. https://doi.org/10.2478/adms-2025-0008
  31. Mohammed, B., & Azmi, N. J. (2011). Failure mode and modulus elasticity of concrete containing recycled tire rubber. The Journal of Solid Waste Technology and Management, 37(1), 16–24. https://doi.org/10.5276/JSWTM.2011.16
  32. Moulay-Ali, A., Abdeldjalil, M., & Khelafi, H. (2021). An experimental study on the optimal compositions of ordinary concrete based on corrected dune sand – Case of granular range of 25 mm. Case Studies in Construction Materials, 14, e00521. https://doi.org/10.1016/j.cscm.2021.e00521
  33. Naito, C., States, J., Jackson, C., & Bewick, B. (2014). Assessment of crumb rubber concrete for flexural structural members. Journal of Materials in Civil Engineering, 26(10), 04014075. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000986
  34. Noor, N. M., Yamamoto, D., Hamada, H., & Sagawa, Y. (2016). Rubberized concrete durability against abrasion. MATEC Web of Conferences, 47, 01006. https://doi.org/10.1051/matecconf/20164701006
  35. Nuzaimah, M., Sapuan, S. M., Nadlene, R., & Jawaid, M. (2018). Recycling of waste rubber as fillers: A review. IOP Conference Series: Materials Science and Engineering, 368, 012016. https://doi.org/10.1088/1757-899X/368/1/012016
  36. Park, S., Lee, E., Ko, J., Yoo, J., & Kim, Y. (2018). Rheological properties of concrete using dune sand. Construction and Building Materials, 172, 685–695. https://doi.org/10.1016/j.conbuildmat.2018.03.192
  37. Pham, T. M., Elchalakani, M., Hao, H., Lai, J., Ameduri, S., & Tran, T. M. (2019). Durability characteristics of lightweight rubberized concrete. Construction and Building Materials, 224, 584–599. https://doi.org/10.1016/j.conbuildmat.2019.07.048
  38. Serikma, M., Benahmed, B., Kennouche, S., Mohd Hashim, M. H., & Merabti, S. (2024). Valorization of glass powder as filler in self-compacting concrete. Scientific Review Engineering and Environmental Sciences, 33(3), 261–277. https://doi.org/10.22630/srees.9810
  39. Singaravel, D. A., Veerapandian, P., Rajendran, S., & Dhairiyasamy, R. (2024). Enhancing high-performance concrete sustainability: integration of waste tire rubber for innovation. Scientific Reports, 14(1), 4635. https://doi.org/10.1038/s41598-024-55485-9
  40. Siringi, G. M., Abolmaali, A., & Aswath, P. B. (2013). Properties of concrete with crumb rubber replacing fine aggregates (sand). Advances in Civil Engineering Materials, 2(1), 218–232. https://doi.org/10.1520/ACEM20120044
  41. Sofi, F. A., Joo, M. R., & Rajak, S. (2024). Experimental study on crumb-rubberized concrete: Mechanical properties and SEM analysis. EasyChair Preprint. https://easychair.org/publications/preprint/j2Rf/open
  42. Youssf, O., Mills, J. E., Ellis, M., Benn, T., Zhuge, Y., Ma, X., & Gravina, R. J. (2022). Practical application of crumb rubber concrete in residential slabs. Structures, 36, 837–853. https://doi.org/10.1016/j.istruc.2021.12.062
DOI: https://doi.org/10.22630/srees.10786 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 417 - 435
Submitted on: Sep 4, 2025
|
Accepted on: Nov 17, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services

© 2025 Amar Mezidi, Salem Merabti, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.