Have a personal or library account? Click to login
The influence of iron powder content on the fresh and hardened properties of mortar Cover

The influence of iron powder content on the fresh and hardened properties of mortar

Open Access
|Jun 2025

References

  1. Association Française de Normalisation [AFNOR] (1999). Méthodes d’essai des mortiers pour maçonnerie. Partie 7: détermination de la teneur en air du mortier frais (NF EN 1015-7) [Methods of test for mortar for masonry. Part 7: determination of air content of fresh mortar]. AFNOR.
  2. Association Française de Normalisation [AFNOR] (2007). Méthodes d’essai des mortiers pour maçonnerie. Partie 6: détermination de la masse volumique apparente du mortier frais (NF EN 1015-6/A1) [Methods of test for mortar for masonry. Part 6: determination of bulk density of fresh mortar]. AFNOR.
  3. Association Française de Normalisation [AFNOR] (2012a). Ciment. Partie 1: Compostition, spécifications et critères de conformité des ciments courants (NF EN 197-1) [Cement. Part 1: composition, specifications and conformity criteria for common cements]. AFNOR.
  4. Association Française de Normalisation [AFNOR] (2012b). Essais pour béton durci. Partie 3: résistance à la compression des éprouvettes (NF EN 12390-3) [Tests for hardened concrete. Part 3: compressive strength of the specimens]. AFNOR.
  5. Association Française de Normalisation [AFNOR] (2012c). Essais pour déterminer les caractéristiques géométriques des granulats. Partie 1: détermination de la granularité. Analyse granulométrique par tamisage (NF EN 933-1) [Tests for geometrical properties of aggregates. Part 1: determination of particle size distribution. Sieving method]. AFNOR.
  6. Association Française de Normalisation [AFNOR] (2015). Essais pour déterminer les caractéristiques géométriques des granulats. Partie 8: évaluation des fines. Équivalent de sable (NF EN 933-8+A1) [Tests for geometrical properties of aggregates. Part 8: assessment of fines. Sand equivalent test]. AFNOR.
  7. Association Française de Normalisation [AFNOR] (2017a). Bétons. Mesure du temps d’écoulement des bétons et des mortiers au maniabilimètre (NF P 18-452) [Concretes. Measuring the flow time of concretes and mortars using a workabilitymeter]. AFNOR.
  8. Association Française de Normalisation [AFNOR] (2017b). Essais pour béton durci. Partie 1: Forme, dimensions et autres exigences aux éprouvettes et aux moules (NF EN 12390-1) [Testing hardened concrete. Part 1: shape, dimensions and other requirements for specimens and moulds]. AFNOR.
  9. Association Française de Normalisation [AFNOR] (2022a). Béton. Spécification, performance, production et conformité. Complément national à la norme (NF EN 206+A2) [Concrete. Specification, performance, production and conformity. National addition to the standard]. AFNOR.
  10. Association Française de Normalisation [AFNOR] (2022b). Essais pour déterminer les caractéristiques mécaniques et physiques des granulats. Partie 7: détermination de la masse volumique réelle du filler. Méthode au picnomètre (NF EN 1097-7) [Tests for mechanical and physical properties of aggregates. Part 7: determination of the particle density of filler. Pyknometer method]. AFNOR.
  11. Belebchouche, C., Temami, O., Khouadjia, M. L. K., Hamlaoui, S., Berkouche, A., & Chouadra, T. (2024). Recycling of brick and road demolition waste in the production of concrete. Science, Engineering and Technology, 4(2), 14‒23. https://doi.org/10.54327/set2024/v4.i2.154
  12. Bogue, R. H. (1947). Chemistry of Portland cement. Reinhold.
  13. Cui, L., Chen, P., Wang, L., Xu, Y., & Wang, H. (2022). Reutilizing waste iron tailing powders as filler in mortar to realize cement reduction and strength enhancement. Materials, 15(2), 541. https://doi.org/10.3390/ma15020541
  14. Cui, L., Xu, Y., Wang, L., Ying, P., & Wang, H. (2024). Investigating the hydration characteristics of iron tailings powder cement mortar produced by the mortar substitution method. Journal of Building Engineering, 81, 108100. https://doi.org/10.1016/j.jobe.2023.108100
  15. Dias, R., Bigotto, S., Benjamim, D. U., Chotolli, D. L., & de Souza, M. V. (2020). Concrete mixture with the use of iron powder waste for coarse aggregate doping. International Journal of Multidisciplinary Sciences and Engineering, 11(2), 18‒24. https://www.ijmse.org/Volume11/Issue2/paper3_11_2.pdf
  16. European Committee for Standardization [CEN] (2016). Methods of testing cement. Part 3: Determination of setting times and soundness (EN 196-3).
  17. Fahad, B. M., & Jassim, K. S. (2020). Behaviour of cement mortar containing iron waste powder as a substitute for sand. IOP Conference Series: Materials Science and Engineering, 737(1), 012064. https://doi.org/10.1088/1757-899X/737/1/012064
  18. Giovanni, D., Rumbyarso, Y. P. A., & Siagian, B. (2024). Analysis of concrete compressive strength with partial substitution of iron powder waste as fine aggregate. International Journal of Multi Science, 4(02), 122‒129.
  19. Han, F., Zhang, H., Liu, J., & Song, S. (2022). Influence of iron tailing powder on properties of concrete with fly ash. Powder Technology, 398, 117132. https://doi.org/10.1016/j.powtec.2022.117132
  20. Harabi, H., Khouadjia, M. L. K., Bensalem, S., Isleem, H. F., & Khishe, M. (2024). Effect of waste paper aggregate and polyethylene terephthalate on mortar performance. Scientific Reports, 14(1), 29588. https://doi.org/10.1038/s41598-024-80914-0
  21. Harrison, R. M. (Ed.). (2023). Pollution: causes, effects, and control. Royal Society of Chemistry.
  22. Khouadjia, M. L. K., Bensalem, S., Belebchouche, C., Boumaza, A., Hamlaoui, S., & Czarnecki, S. (2025). Sustainable geopolymer tuff composites utilizing iron powder waste: rheological and mechanical performance evaluation. Sustainability, 17(3), 1240. https://doi.org/10.3390/su17031240
  23. Khouadjia, M. L. K., Bensalem, S., Belkadi, A. A., Kessal, O., & Sebti, M. A. (2023). Influence of the shape and content of steel and aluminum fibers from industrial lathe wastes on the physico-mechanical and rheological behavior of concrete. Journal of Applied Engineering Sciences, 13(26), 207‒214. https://doi.org/10.2478/jaes-2023-0026
  24. Kong, L., Xie, S., Wang, C., & Wang, L. (2023). Effect of iron tailings as fine aggregate and mineral admixture on strength and microstructure of cement mortar. International Journal of Concrete Structures and Materials, 17(1), 24. https://doi.org/10.1186/s40069-023-00584-6
  25. Krikar, M., Noori, G., & Ibrahim, H. H. (2018). Mechanical properties of concrete using iron waste as a partial replacement of sand. Eurasian Journal of Science and Engineering, 3(3), 75‒82. https://doi.org/10.23918/eajse.v3i3p75
  26. Largeau, M. A. (2018). Effect of iron powder partially used as Portland cement replacement on the structural properties of concrete (doctoral dissertation). Jomo Kenyatta University of Agriculture and Technology.
  27. Largeau, M. A., Mutuku, R., & Thuo, J. (2018). Effect of iron powder (Fe2O3) on strength, workability, and porosity of the binary blended concrete. Open Journal of Civil Engineering, 8(04), 411. https://doi.org/10.4236/ojce.2018.84029
  28. Lu, Y., Huang, J., & Gao, Y. (2020). Study on the preparation and properties of modified functional mortar mixed with reduced iron powder. IOP Conference Series: Materials Science and Engineering, 735(1), 012018. https://doi.org/10.1088/1757-899X/735/1/012018
  29. Małek, M., Jackowski, M., Łasica, W., Kadela, M., & Wachowski, M. (2021). Mechanical and material properties of mortar reinforced with glass fiber: An experimental study. Materials, 14(3), 698. https://doi.org/10.3390/ma14030698
  30. Miah, M. J., Ali, M. K., Paul, S. C., John Babafemi, A., Kong, S. Y., & Šavija, B. (2020). Effect of recycled iron powder as fine aggregate on the mechanical, durability, and high temperature behavior of mortars. Materials, 13(5), 1168. https://doi.org/10.3390/ma13051168
  31. Miah, M. J., Miah, M. S., Paul, S. C., Kong, S. Y., Babafemi, A. J., Ali, M. K., & Patoary, M. M. H. (2021). Waste iron powder is used as aggregate and as a binder in mortar production. Magazine of Civil Engineering, 108(8), 10810. https://doi.org/10.34910/MCE.108.10
  32. Ruidong, W., Yu, S., Juanhong, L., Linian, C., Guangtian, Z., & Yueyue, Z. (2021). Effect of iron tailings and slag powders on workability and mechanical properties of concrete. Frontiers in Materials, 8, 723119. https://doi.org/10.3389/fmats.2021.723119
  33. Tao, L. I., & Dang, B. (2016). Experimental study on the compressive strength of iron tailings concrete with different replacement types. Hebei Journal of Industrial Science and Technology, 33, 240‒245.
  34. Tayeh, B. A., & Al Saffar, D. M. (2018). Utilization of waste iron powder as fine aggregate in cement mortar. Journal of Engineering Research and Technology, 5(2), 22‒27.
  35. Thakur, A., Singh, D., & Singh, A. (2019). Enhancement in properties of cement mortar by using iron-based material: a critical review. International Journal for Research in Applied Science & Engineering Technology, 7(12), 689‒691.
DOI: https://doi.org/10.22630/srees.10391 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 198 - 217
Submitted on: Apr 14, 2025
Accepted on: Jun 9, 2025
Published on: Jun 30, 2025
Published by: Warsaw University of Life Sciences - SGGW Press
In partnership with: Paradigm Publishing Services

© 2025 Bariza Boukni, Sara Bensalem, Mohamed Lyes Kamel Khouadjia, Oussama Temami, Salim Hamlaoui, Cherif Belebchouche, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.