Have a personal or library account? Click to login
Solidification/stabilization of fly ash contaminated with radiocaesium into geopolymers Cover

Solidification/stabilization of fly ash contaminated with radiocaesium into geopolymers

Open Access
|Mar 2025

References

  1. Abass, M. R., Breky, M. M. E., & Maree, R. M. (2022). Removal of 137Cs and 90Sr from simulated low-level radioactive waste using tin(IV) vanadate sorbent and its potential hazardous parameters. Applied Radiation and Isotopes, 189, 110417. https://doi.org/10.1016/j.apradiso.2022.110417
  2. American National Standards Institute [ANSI]. (1986). Measurement of the leachability of solidified low-level radioactive wastes by a short-term test procedure (ANSI/ANS-16.1-1986). American National Standards Institute.
  3. Amran, Y. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679
  4. Bhutta, A., Farooq, M., & Banthia, N. (2019). Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Construction and Building Materials, 215, 605‒612. https://doi.org/10.1016/j.conbuildmat.2019.04.210
  5. Carrillo-Beltran, R., Corpas-Iglesias, F. A., Terrones-Saeta, J. M., & Bertoya-Sol, M. (2021). New geopolymers from industrial by-products: Olive biomass fly ash and chamotte as raw materials. Construction and Building Materials, 272, 121924. https://doi.org/10.1016/j.conbuildmat.2020.121924
  6. Česká agentura pro standardizaci [ČSN]. (2017). Geotechnický průzkum a zkoušení – Laboratorní zkoušky zemin. Část 4: Stanovení zrnitosti [Geotechnical exploration and testing – Laboratory testing of soils. Part 4: Determination of grain size] (ČSN EN ISO 17892-4).
  7. Chen, X., Zhang, J., Lu, M., Chen, B., Gao, S., Bai, J., Zhang, H., & Yang, Y. (2022). Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer. Construction and Building Materials, 314, 125650. https://doi.org/10.1016/j.conbuildmat.2021.125650
  8. Danish, Khan, S. U. D., & Ahmad, A. (2021). Testing the pollution haven hypothesis on the pathway of sustainable development: accounting the role of nuclear energy consumption. Nuclear Engineering and Technology, 53(8), 2746‒2752. https://doi.org/10.1016/j.net.2021.02.008
  9. Davidovits, J. (2011). Geopolymer chemistry and applications. Geopolymer Institute.
  10. Durmuş, R. K. I., & Erenturk, S. A. (2023). Evaluation of adsorption behaviour of selenium onto zeolite-based composite barrier material for intermediate deep radioactive waste repository. Progress in Nuclear Energy, 158, 104604. https://doi.org/10.1016/j.pnucene.2023.104604
  11. Envinet (2024). Produkty. Envinet. https://www.nuvia.com/cz/subjekty/ceska-republika/
  12. Enviroportál (2023). Radioactive waste. Enviroportál. https://www.enviroportal.sk/indicator/detail?id=805
  13. Fu, S., He, P., Wang, M., Cui, J., Wang, M., Duan, X., Yang, Z., Jia, D., & Zhou, Y. (2020). Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage. Journal of Cleaner Production, 248, 119240. https://doi.org/10.1016/j.jclepro.2019.119240
  14. Gao, H., Liu, H., Liao, L., Mei, L., Zhang, F., Zhang, L., Li, S., & Lv, G. (2020). A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation. Construction and Building Materials, 251, 118888. https://doi.org/10.1016/j.conbuildmat.2020.118888
  15. GEOFIX (2024). Hazardous waste processing. GEOFIX, s.r.o. https://www.geofixsro.sk/
  16. Hu, S., Zhong, L., Yang, X., Bai, H., Ren, B., Zhao, Y., Zhang, W., Ju, X., Wen, H., Mao, S., Tao, R., & Li, C. (2020). Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals. Construction and Building Materials, 254, 119273. https://doi.org/10.1016/j.conbuildmat.2020.119273
  17. Jain, S., Banthia, N., & Troczynski, T. (2022a). Leaching of immobilized cesium from NaOH-activated fly ash-based geopolymers. Cement and Concrete Composites, 133, 104679. https://doi.org/10.1016/j.cemconcomp.2022.104679
  18. Jain, S., Banthia, N., & Troczynski, T. (2022b). Conditioning of simulated cesium radionuclides in NaOH-activated fly ash-based geopolymers. Journal of Cleaner Production, 380, 134984. https://doi.org/10.1016/j.jclepro.2022.134984
  19. JAVYS (2024). Nuclear and decommissioning company. JAVYS. https://www.javys.sk/en/index.php
  20. Kürklü, G., & Görhan, G. (2019). Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Construction and Building Materials, 217, 498–506. https://doi.org/10.1016/j.conbuildmat.2019.05.104
  21. Li, Q., Sun, Z., Tao, D., Xu, Y., Li, P., Cui, H., & Zhai, J. (2013). Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. Journal of Hazardous Materials, 262, 325–331. https://doi.org/10.1016/j.jhazmat.2013.08.049
  22. Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., & Colombo, P. (2022). Preparation, properties and applications of fly ash-based porous geopolymers: A review. Journal of Cleaner Production, 359, 132043. https://doi.org/10.1016/j.jclepro.2022.132043
  23. Liu, J., Xu, Y., Zhang, W., Ye, J., & Wang, R. (2024). Solidification performance and mechanism of typical radioactive nuclear waste by geopolymers and geopolymer ceramics: a review. Progress in Nuclear Energy, 169, 105106. https://doi.org/10.1016/j.pnucene.2024.105106
  24. Lv, X., Wang, K., He, Y., & Cui, X. (2019). A green drying powder inorganic coating based on geopolymer technology. Construction and Building Materials, 214, 441–448. https://doi.org/10.1016/j.conbuildmat.2019.04.163
  25. Microsoft Corporation (2016). Microsoft Excel. Microsoft Corporation.
  26. Mukiza, E., Phung, Q. T., Frederickx, L., Jacques, D., Seetharam, S., & De Schutter, G. (2023). Co-immobilization of cesium and strontium containing waste by metakaolin-based geopolymer: Microstructure, mineralogy and mechanical properties. Journal of Nuclear Materials, 585, 154639. https://doi.org/10.1016/j.jnucmat.2023.154639
  27. Origin Lab Corporation (2016). Origin Pro 2016. Origin Lab Corporation.
  28. Pu, S., Xu, B., Cai, G., Duan, W., Liu, Y., Lang, L., Shen, Z., & Yao, H. (2024). Strongly acidic lead contaminated soil solidification/stabilization using metakaolin-modified fly ash phosphoric-based geopolymer. Chemical Engineering Journal, 496, 154336. https://doi.org/10.1016/j.cej.2024.154336
  29. Singh, S., Aswath, M. U., & Ranganath, R. V. (2020). Performance assessment of red mud based geopolymer bricks and prisms. Journal of Building Engineering, 32, 101462. https://doi.org/10.1016/j.jobe.2020.101462
  30. Slovenský ústav technickej normalizácie [SUTN]. (2005). Kvalita pôdy. Stanovenie pH [Soil quality. Determination of pH] (STN ISO 10390). Slovenský ústav technickej normalizácie.
  31. Tan, G., Liu, Z., Ma, X., Zheng, Z., Zhang, G., Wu, B., Zhang, L., & Liu, L. (2024). Phosphoric acid-activated metakaolin-based geopolymer: Optimizing P/A molar ratio to solidify Cs+ and Sr2+ in nuclear waste. Nuclear Engineering and Design, 424, 113300. https://doi.org/10.1016/j.nucengdes.2024.113300
  32. Teixeira, E. R., Camões, A., & Branco, F. G. (2022). Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties. Construction and Building Materials, 314, 125680. https://doi.org/10.1016/j.conbuildmat.2021.125680
  33. Tian, Q., Nakama, S., & Sasaki, K. (2019). Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Science of the Total Environment, 687, 1127–1137. https://doi.org/10.1016/j.scitotenv.2019.06.095
  34. Tian, Q., Wang, H., Pan, Y., Bai, Y., Chen, C., Yao, S., Guo, B., & Zhang, H. (2022). Immobilization mechanism of cesium in geopolymer: Effects of alkaline activators and calcination temperature. Environmental Research, 215, 114333. https://doi.org/10.1016/j.envres.2022.114333
  35. Wang, Y., Han, F., & Mu, J. (2018). Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Construction and Building Materials, 160, 818–827. https://doi.org/10.1016/j.conbuildmat.2017.12.006
  36. Zhan, L., Bo, Y., Lin, T., & Fan, Z. (2021). Development and outlook of advanced nuclear energy technology. Energy Strategy Reviews, 34, 100630. https://doi.org/10.1016/j.esr.2021.100630
DOI: https://doi.org/10.22630/srees.10058 | Journal eISSN: 2543-7496 | Journal ISSN: 1732-9353
Language: English
Page range: 55 - 72
Submitted on: Oct 29, 2024
Accepted on: Dec 18, 2024
Published on: Mar 30, 2025
Published by: Warsaw University of Life Sciences - SGGW Press
In partnership with: Paradigm Publishing Services

© 2025 Šimon Rezbárik, Lenka Vavrincová, Martin Valica, Vanda Adamcová, Stanislav Sekely, Ján Rezbárik, Miroslav Horník, published by Warsaw University of Life Sciences - SGGW Press
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.