Have a personal or library account? Click to login

Reply to “Comment on Geodesic Cycle Length Distributions in Delusional and Other Social Networks”

By:
Open Access
|Oct 2020

References

  1. Abbott, A. 1988. “Transcending General Linear Reality”. Sociological Theory 6(2):169-86.
  2. Barabási, A.L., and R. Albert 1999. “Emergence of Scaling in Random Networks”. Science 286(5439):509-12.
  3. Bearman, P.S., J. Moody, and K. Stovel. 2004. “Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks”. American Journal of Sociology 110(1):44-91.
  4. Block, P., J. Hollway, C. Stadtfeld, J. Koskinen, and T.A.B. Snijders. 2019. ““Predicting” after Peeking into the Future: Correcting a Fundamental Flaw in the SAOM – TERGM Comparison of Leifeld and Cranmer (2019)”. arXiv preprint arXiv:1911.01385v1.
  5. Block, P., J. Koskinen, J. Hollway, C. Steglich, and C. Stadtfeld. 2018. “Change We Can Believe in: Comparing Longitudinal Network Models on Consistency, Interpretability and Predictive Power”. Social Networks 52:180-91.
  6. Block, P., C. Stadtfeld, and T.A.B. Snijders. 2019. “Forms of Dependence: Comparing SAOMs and ERGMs from Basic Principles”. Sociological Methods & Research 48(1):202-39.
  7. Broido, A.D., and A. Clauset. 2019. “Scale-Free Networks are Rare”. Nature Communications 10(1):1017.
  8. Butts, C.T. 2017. “Comment: Actor Orientation and Relational Event Models”. Sociological Methodology 47(1):47-56.
  9. Colomer-de-Simón, P., and M. Boguñá. 2014. “Double Percolation Phase Transition in Clustered Complex Networks”. Physical Review X 4(4):041020.
  10. Colomer-de-Simón, P., M.A. Serrano, M.G. Beiró, J.I. Alvarez-Hamelin, and M. Boguñá. 2013. “Deciphering the Global Organization of Clustering in Real Complex Networks”. Scientific Reports 3(1):2517.
  11. Fritz, C., M. Lebacher, and G. Kauermann. 2020. “Tempus Volat, Hora Fugit: A Survey of Tie-oriented Dynamic Network Models in Discrete and Continuous Time”. Statistica Neerlandica 74(3):275-99.
  12. Gondal, N., and P.D. McLean. 2013. “What Makes a Network Go Round? Exploring the Structure of a Strong Component with Exponential Random Graph Models”. Social Networks 35(4):499-513.
  13. Handcock, M.S., and J.H. Jones. 2004. “Likelihood-based Inference for Stochastic Models of Sexual Network Formation”. Theoretical Population Biology 65(4):413-22.
  14. Hummel, R.M., D.R. Hunter, and M.S. Handcock. 2012. “Improving Simulation-based Algorithms for Fitting ERGMs”. Journal of Computational and Graphical Statistics 21(4):920-39.
  15. Hunter, D.R. 2007. “Curved Exponential Family Models for Social Networks”. Social Networks 29(2):216-30.
  16. Leifeld, P., and S.J. Cranmer. 2019. “A Theoretical and Empirical Comparison of the Temporal Exponential Random Graph Model and the Stochastic Actor-oriented Model”. Network Science 7(1):20-51.
  17. Levy, M.A. 2016. “gwdegree: Improving Interpretation of Geometrically-Weighted Degree Estimates in Exponential Random Graph Models”. Journal of Open Source Software 1(3):36.
  18. Lusher, D., and G. Robins. 2013. “Formation of Social Network Structure”. In Exponential Random Graph Models for Social Networks, edited by D. Lusher, J. Koskinen and G. Robins, 16-28. New York: Cambridge University Press.
  19. Mahadevan, P., D. Krioukov, K. Fall, and A. Vahdat. 2006. “Systematic Topology Analysis and Generation Using Degree Correlations”. ACM SIGCOMM Computer Communication Review 36(4):135-46.
  20. Martin, J. L. 2017. “The Structure of Node and Edge Generation in a Delusional Social Network”. Journal of Social Structure 18(1):1-21.
  21. Orsini, C., M.M. Dankulov, P. Colomer-de-Simón, A. Jamakovic, P. Mahadevan, A. Vahdat, … and S. Fortunato. 2015. “Quantifying Randomness in Real Networks”. Nature Communications 6(1):8627.
  22. Pattison, P., and T.A.B. Snijders. 2013. “Modeling Social Networks: Next Steps”. In Exponential Random Graph Models for Social Networks, edited by D. Lusher, J. Koskinen and G. Robins, 287-301. New York: Cambridge University Press.
  23. Robins, G., and G. Daraganova. 2013. “Social Selection, Dyadic Covariates, and Geospatial Effects”. In Exponential Random Graph Models for Social Networks, edited by D. Lusher, J. Koskinen and G. Robins, 91-101. New York: Cambridge University Press.
  24. Robins, G., P. Elliott, and P. Pattison. 2001. “Network Models for Social Selection Processes”. Social Networks, 23(1):1-30.
  25. Rolls, D.A., P. Wang, E. McBryde, P. Pattison, and G. Robins. 2015. “A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models”. PLoS ONE 10(11):e0142181.
  26. Snijders, T.A.B. 2017. “Comment: Modeling of Coordination, Rate Functions, and Missing Ordering Information”. Sociological Methodology 47(1):41-7.
  27. Snijders, T.A.B., P.E. Pattison, G.L. Robins, and M.S. Handcock. 2006. “New Specifications for Exponential Random Graph Models”. Sociological Methodology 36(1):99-153.
  28. Stadtfeld, C., and P. Block. 2017. “Interactions, Actors, and Time: Dynamic Network Actor Models for Relational Events”. Sociological Science 4:318-52.
  29. Stadtfeld, C., J. Hollway, and P. Block. 2017a. “Dynamic Network Actor Models: Investigating Coordination Ties Through Time”. Sociological Methodology 47(1):1-40.
  30. Stadtfeld, C., J. Hollway, and P. Block. 2017b. “Rejoinder: DyNAMs and the Grounds for Actor-Oriented Network Event Models”. Sociological Methodology 47(1):56-67.
  31. Stumpf, M.P., and M.A. Porter. 2012. “Critical Truths about Power Laws”. Science, 335(6069):665-6.
DOI: https://doi.org/10.21307/joss-2020-004 | Journal eISSN: 1529-1227 | Journal ISSN: 2300-0422
Language: English
Page range: 94 - 106
Published on: Oct 1, 2020
Published by: International Network for Social Network Analysis (INSNA)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Alex Stivala, published by International Network for Social Network Analysis (INSNA)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.