References
- Arabie, P., Hubert, L., & Schleutermann, S. (1990). Blockmodels from the bond energy algorithm. Social Networks, 12, 99-126.
- Baier, D., Gaul, W., & Schader, M. (1997). Two-mode overlapping clustering with applications in simultaneous benefit segmentation and market structuring. In Klar R. & Opitz O. (Eds), Classification and knowledge organization (pp. 557-566), Heidelberg: Springer.
- Brusco, M. (2011). Analysis of two-mode network data using nonnegative matrix factorization. Social Networks, 33, 201-210.
- Brusco, M., & Doreian, P. (2015a). A real-coded genetic algorithm for two-mode KL-means partitioning with application to homogeneity blockmodeling. Social Networks, 41, 26-35.
- Brusco, M. J., & Doreian, P. (2015b). An exact algorithm for two-mode KL-means partitioning. Journal of Classification, 32, 481-515.
- Brusco, M., Doreian, P., Lloyd, P., & Steinley, D. (2013a). A variable neighborhood search method for a two-mode blockmodeling problem in social network analysis, Network Science, 1 (2), 191-212.
- Brusco, M., Doreian, P., Mrvar, A., & Steinley, D. (2013b). An exact algorithm for blockmodeling of two-mode network data. Journal of Mathematical Sociology, 37, 61-84.
- Brusco, M. J., Doreian, P., & Steinley, D. (2016). Biclustering methods for one-mode asymmetric matrices. Behavior Research Methods, 48, 487-502.
- Brusco, M., & Steinley, D. (2006). Inducing a blockmodel structure for two-mode binary data using seriation procedures. Journal of Mathematical Psychology, 50, 468-477.
- Brusco, M., & Steinley, D. (2007a). A variable neighborhood search method for generalized blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51, 325-338.
- Brusco, M. J., & Steinley, D. (2007b). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72, 583-600.
- Brusco, M., & Steinley, D. (2011). A tabu search heuristic for deterministic two-mode blockmodeling of binary network matrices. Psychometrika, 76, 612-633.
- Ceulemans, E., & Van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: interrelations and model selection. Psychometrika, 70, 461-480.
- Coombs, C. H. (1964). A theory of data. New York: Wiley.
- Davis, A., Gardner, B., & Gardner, M. R. (1941). Deep south. Chicago, University of Chicago Press.
- Doreian, P. (1979). On delineation of small group structure. In: Hudson, H. C. (Ed.), Classifying social data (pp. 215-230), San Francisco: Jossey-Bass.
- Doreian, P., Batagelj, V., & Ferligoj, A. (2004). Generalized blockmodeling of two-mode network data. Social Networks, 26, 29-53.
- Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling. Cambridge: Cambridge University Press.
- Doreian, P., Lloyd, P., & Mrvar, A. (2013). Partitioning large signed two-mode networks: Problems and prospects. Social Networks, 35, 1-21.
- Everett, M. G., & Borgatti, S. P. (2013). The dual-projection approach for two-mode networks. Social Networks, 35, 204-210.
- Faust, K. (1997). Centrality in affiliation networks. Social Networks, 19, 157-191.
- Forgy, E. W. (1965). Cluster analyses of multivariate data: Efficiency versus interpretability of classifications. Abstract in Biometrics, 21, 768-769.
- Freeman, L. C. (1980). Q-analysis and the structure of friendship networks. International Journal of Man-Machine Studies, 12, 367-378.
- Galaskiewicz, J. (1985). Social organization of an urban grants economy. New York: Academic Press.
- Gaul, W., & Schader, M. (1996). A new algorithm for two-mode clustering. In Bock H. & Polasek W. (Eds.), Data analysis and information systems (pp. 15-23), Berlin: Springer.
- Hansen, P., & Mladenović, N. (2001). J-Means: A new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34, 405-413.
- Hansohm, J. (2002). Two-mode clustering with genetic algorithms. In Gaul W. & Ritter G. (Eds.), Classification, automation and new media (pp. 87-93), Berlin: Springer.
- Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets: History and context. ACM Transactions on Interactive and Intelligent Systems, 5 (4), Article 19, 1-19.
- Hubert, L. (1974). Problems of seriation using a subject by item response matrix. Psychological Bulletin, 81, 976-983.
- Hubert L, & Arabie P. (1985). Comparing partitions. Journal of Classification, 2, 195-218.
- Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks. Journal of Mathematical Sociology, 1, 49-80.
- MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Le Cam L. M. & Neyman J. (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1 (pp. 281-297), Berkeley, CA: University of California Press.
- Milligan, G. W. (1980). An examination of the effects of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
- Mische, A., & Pattison, P. (2000). Composing a civic arena: Publics, projects, and social settings. Poetics, 27, 163-194.
- Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks, 35, 159-167.
- Pattison, P. E. (1993). Algebraic models for social networks. New York: Cambridge University Press.
- Pattison, P. E., & Bartlett, W. K. (1982). A factorization procedure for finite algebras. Journal of Mathematical Psychology, 25, 51-81.
- Pattison, P. E., & Brieger, R. L. (2002). Lattices and dimensional representations: matrix decompositions and ordering structures. Social Networks, 24, 423-444.
- Späth, H. (1980). Cluster analysis algorithms for data reduction and classification of objects. Chichester, England: Ellis Horwood.
- Steinhaus, H. (1956). Sur la division des corps matériels en parties. Bulletin de l’Académie Polonaise des Sciences, Classe III, IV(12), 801-804.
- Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386-396.
- Steinley, D. (2006a). K-means clustering: A half-century synthesis. British Journal of Mathematical and Statistical Psychology, 59, 1-34.
- Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods, 11, 178-192.
- Trejos, J., & Castillo, W. (2000). Simulated annealing optimization for two-mode partitioning. In Gaul, W., Decker, R. (Eds.), Classification and information at the turn of the millennium (pp. 135-142), Heidelberg: Springer.
- van Rosmalen, J., Groenen, P. J. F., Trejos, J., & Castillo, W. (2009). Optimization strategies for two-mode partitioning. Journal of Classification, 26, 155-181.
- Vichi, M. (2001). Double K-means clustering for simultaneous classification of objects and variables. In Borra, S., Rocchi, R., Schader, M. (Eds.), Advances in classification and data analysis – studies in classification, data analysis and knowledge organization (pp. 43-52), Heidelberg: Springer.
- Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press.
- Wilderjans, T. F., Ceulemans, E., & Meers, K. (2013). CHull: A generic convex hull based model selection method. Behavior Research Methods, 45, 1-15.
- Xu, W., Liu, X, & Gong, Y. (2001). Document clustering based on non-negative matrix factorization. Proceedings of the 26th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267-273.