Have a personal or library account? Click to login

Four Pristionchus species associated with two mass-occurring Parafontaria laminata populations

Open Access
|Nov 2020

Figures & Tables

Figure 1:

Millipedes (Parafontaria laminata) collected for this study.
Millipedes (Parafontaria laminata) collected for this study.

Figure 2:

Phylogenetic relationships among the 54 haplotypes of four Pristionchus species found in this study. A: Unrooted tree showing the relationships among the four species; B: Phylogenetic relationships among the 47 genotypes of P. degawai. The Maximum Likelihood tree was inferred from partial sequences of the mtCOI gene. The GTR+G model was applied, and the parameters were as follows: lnL = –45,723.93825, freqA = 0.21, freqC = 0.10, freqG = 0.16, freqT = 0.43, R(a) = 3.9, R(b) = 100.0, R(c) = 15.8, R(d) = 14.0, R(e) = 100.0, R(f) = 1.0, and Shape = 0.12. Bootstrap values exceeding 50% are given on the appropriate clades. Some P. fukushimae strains did not amplify with the universal mtCOI primers (Kanzaki and Futai, 2002), probably because of a mutation in the primer region, and these strains were treated as a genotype (they do not appear in the tree). Symbols after haplotype codes indicate the haplotype found only from Nob (open circle), only from Mat (closed circle) and both Nob and Mat (arrow).
Phylogenetic relationships among the 54 haplotypes of four Pristionchus species found in this study. A: Unrooted tree showing the relationships among the four species; B: Phylogenetic relationships among the 47 genotypes of P. degawai. The Maximum Likelihood tree was inferred from partial sequences of the mtCOI gene. The GTR+G model was applied, and the parameters were as follows: lnL = –45,723.93825, freqA = 0.21, freqC = 0.10, freqG = 0.16, freqT = 0.43, R(a) = 3.9, R(b) = 100.0, R(c) = 15.8, R(d) = 14.0, R(e) = 100.0, R(f) = 1.0, and Shape = 0.12. Bootstrap values exceeding 50% are given on the appropriate clades. Some P. fukushimae strains did not amplify with the universal mtCOI primers (Kanzaki and Futai, 2002), probably because of a mutation in the primer region, and these strains were treated as a genotype (they do not appear in the tree). Symbols after haplotype codes indicate the haplotype found only from Nob (open circle), only from Mat (closed circle) and both Nob and Mat (arrow).

Figure 3:

Previous isolation record of Pristionchus spp. associated with millipedes in Japan. The collection localities for the present study are suggested by solid line box, previous record of the species mentioned in the present study are suggested by dotted line box, and Hachijojima Isl. (Carta et al., 2018) is suggested by double line box. N. Kanzaki’s unpubl. obs. is indicated with an asterisk.
Previous isolation record of Pristionchus spp. associated with millipedes in Japan. The collection localities for the present study are suggested by solid line box, previous record of the species mentioned in the present study are suggested by dotted line box, and Hachijojima Isl. (Carta et al., 2018) is suggested by double line box. N. Kanzaki’s unpubl. obs. is indicated with an asterisk.

GenBank accession numbers for the mtCOI haplotypes_

TypeSpeciesAccession numberTypeSpeciesAccession number
A P. fukushimae LC589007E4 P. degawai LC589034
B LC589008E5 LC589035
G P. entomophagus LC589009E6 LC589036
L P. laevicollis LC589010E7 LC589037
M LC589011F1 LC589038
O LC589012F2 LC589039
C P. degawai LC589013F3 LC589040
D1 LC589014F4 LC589041
D2 LC589015F5 LC589042
D3 LC589016F6 LC589043
D4 LC589017F7 LC589044
D5 LC589018F8 LC589045
D6 LC589019F9 LC589046
D7 LC589020F10 LC589047
D8 LC589021F11 LC589048
D9 LC589022F12 LC589049
D10 LC589023F13 LC589050
D11 LC589024F14 LC589051
D12 LC589025F15 LC589052
D13 LC589026F16 LC589053
D14 LC589027F17 LC589054
D15 LC589028H LC589055
D16 LC589029I1 LC589056
D17 LC589030I2 LC589057
E1 LC589031J LC589058
E2 LC589032K LC589059
E3 LC589033N LC589060

Isolation of Pristionchus spp_ in the preliminary study_

Matsubara Lake populationNobeyama population
Individual numberGenderNematode speciesIndividual numberGenderNematode species
Mat_1M P. degawai Nob_1F P. degawai
Mat_2F P. degawai Nob_2M P. degawai, P. laevicollis
Mat_3M P. degawai Nob_3M P. degawai
Mat_4F P. degawai Nob_4M P. degawai
Mat_5F P. degawai Nob_5M P. degawai
Mat_6M P. degawai Nob_6M P. degawai
Mat_7F P. degawai Nob_7F P. degawai, P. laevicollis
Mat_8F P. degawai Nob_8F P. degawai
Mat_9F P. degawai Nob_9M P. degawai
Mat_10F P. degawai Nob_10F P. degawai
Mat_11F P. degawai Nob_11F P. degawai
Mat_12F P. degawai Nob_12F P. degawai, P. laevicollis
Mat_13F P. degawai Nob_13F P. degawai
Mat_14F P. degawai Nob_14M P. degawai
Mat_15F P. degawai Nob_15F P. degawai
Mat_16F P. fukushimae Nob_16F P. degawai
Mat_17F P. fukushimae Nob_17M P. degawai
Mat_18M P. degawai Nob_18M P. degawai
Mat_19F P. degawai Nob_19F P. laevicollis
Mat_20F P. degawai Nob_20F P. degawai
Mat_21M P. degawai Nob_21M P. degawai
Mat_22M P. degawai Nob_22M P. degawai
Mat_23F P. degawai Nob_23F P. degawai
Mat_24F P. degawai Nob_24M P. degawai
Mat_25F P. degawai Nob_25F P. laevicollis
Mat_26F P. degawai Nob_26F P. laevicollis
Mat_27F P. degawai Nob_27F P. laevicollis
Mat_28M P. degawai Nob_28M P. laevicollis
Mat_29M P. degawai Nob_29M P. degawai
Mat_30F P. degawai Nob_30M P. degawai
Mat_31M P. degawai Nob_31F P. laevicollis
Mat_32F P. degawai Nob_32M P. degawai
Mat_33F P. degawai Nob_33M P. laevicollis
Nob_34F P. laevicollis
Nob_35F P. degawai
Nob_36F P. degawai
Nob_37F P. degawai
Nob_38M P. degawai

Mitochondrial cytochrome oxidase subunit I haplotypes isolated in the extensive study_

Matsubara Lake populationNobeyama population
Individual numberGenderHaplotypeIndividual numberGenderNematode species
Mat101MD1, D3, D12, F8, NNob101FF11, La, Ma
Mat102FD1, D2, F17Nob102MD8, F2, Oa
Mat103MD3, D5, F1, F14, F15Nob103MF2, D14
Mat104FD1, D8, D16Nob104MD8, D14, F2
Mat105FD1, D12, F1Nob105MD8, D14
Mat106MC, D1, D6, D16Nob106MD8, F2, F6, E3, E6
Mat107FD3, D8, D17Nob107FD8
Mat108FD1, D5, D6, F15, KNob108FD14, F12, F13
Mat109FD5, D8, D13, E1, E6, F1, KNob109MD1, E6, E7, La
Mat110FD2, D3, D12, F1, K, Xa Nob110FF2, E4
Mat111FD1, D2, D11, E6, F2, F12Nob111FD8, D14
Mat112FD1, D3, D7, F1, F8Nob112FE1, I1
Mat113FD1, D3, D6, D12, F3Nob113FD1, F4, F5, I2
Mat114FD3, D9, E6, F1, F2, F9, K, Ga Nob114MD1, F6, D8
Mat115FD1, D2, D3, D6, D13, F1, F7, F14Nob115FF6
Mat116FD1, F1, F10Nob116FD1, D8, D14
Mat117FD1, D6, D11, F8Nob117MF2, F12
Mat118MD1, D2, D3, D4, D5, D6, D12Nob118MD1, D11, E1, E5
Mat119FD1, D2, D3, F2, HNob119FD1, D3, D10, E2, J, Oa
Mat120FD1, D2, D7, E6, F3Nob120FD15, Ma
DOI: https://doi.org/10.21307/jofnem-2020-115 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Page range: 1 - 10
Published on: Nov 30, 2020
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Natsumi Kanzaki, Minami Ozawa, Yuko Ota, Yousuke Degawa, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.