BeckermanA. P., BentonT. G., LapsleyC. T. and KoestersN.2006. How effective are maternal effects at having effects?Proceedings of the Royal Society B273(1585):485–93.10.1098/rspb.2005.3315156020216615217
BootsM. and RobertsK. E.2012. Maternal effects in disease resistance: poor maternal environment increases offspring resistance to an insect virus. Proceedings of the Royal Society B279(1744): 4009–14.10.1098/rspb.2012.1073342757322833270
DavideR. G. and TriantaphyllouA. C.1967. Influence of the environment on development and sex differentiation of root-knot nematodes. II. Effect of host nutrition. Nematologica13(1): 111–7.10.1163/187529267X00995
DavideR. G. and TriantaphyllouA. C.1968. Influence of the environment on development and sex differentiation of root-knot nematodes. III. Effect of foliar application of maleic hydrazide. Nematologica14(1): 37–46.10.1163/187529268X00624
DaviesK. G., LairdV. and KerryB. R.1991. The motility, development and infection of Meloidogyne incognita encumbered with spores of the obligate hyperparasite Pasteuria penetrans. Revue de Nematologie14(4): 611–8.
DaviesK. G., RoweJ., Manzanilla-LopezR. and OppermanC. H.2011. Re-evaluation of the life-cycle of the nematode-parasitic bacterium Pasteuria penetrans in root-knot nematodes, Meloidogyne spp. Nematology13(7): 825–35.10.1163/138855410X552670
DhinautJ., ChogneM. and MoretY.2018. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. Journal of Animal Ecology87(2): 448–63.10.1111/1365-2656.1266128239855
DubuffetA., ZanchiC., BoutetG., MoreauJ., TeixeiraM. and MoretY.2015. Trans-generational immune priming protects the eggs only against Gram-positive bacteria in the mealworm beetle. PLoS Pathogens11(10): 1–18.10.1371/journal.ppat.1005178459226826430786
DuneauD., LuijckxP., Ben-AmiF., LaforschC. and EbertD.2011. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions. BMC Biology9: 11, doi: 10.1186/1741-7007-9-11.305223821342515
ErmolaevaM. A. and SchumacherB.2014. Insights from the worm: the C. elegans model for innate immunity. Seminars in Immunology26(4): 303–9.10.1016/j.smim.2014.04.005424833924856329
FrazierH. N. and RothM. B. (2009. Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments. Current Biology19(10): 859–63.10.1016/j.cub.2009.03.066274777419398339
GarbuttJ. S. and LittleT. J.2017. Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecology and Evolution7(5): 1403–9.10.1002/ece3.2709533087228261452
GarbuttJ. S., ScholefieldJ. A., ValeP. F. and LittleT. J.2014. Elevated maternal temperature enhances offspring disease resistance in Daphnia magna. Functional Ecology28(2): 424–31.10.1111/1365-2435.12197
GliwiczZ. M. and GuisandeC.1992. Family-planning in Daphnia – resistance to starvation in offspring born to mothers grown at different food levels. Oecologia91(4): 463–7.10.1007/BF0065031728313496
Gravato-NobreM. J. and HodgkinJ.2005. Caenorhabditis elegans as a model for innate immunity to pathogens. Cellular Microbiology7(6): 741–51.10.1111/j.1462-5822.2005.00523.x15888078
GrindstaffJ. L., BrodieE. D. and KettersonE. D.2003. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proceedings of the Royal Society B270: 2309–19.10.1098/rspb.2003.2485169152014667346
GuinneeM. A., GardnerA., HowardA. E., WestS. A. and LittleT. J.2007. The causes and consequences of variation in offspring size: a case study using Daphnia. Journal of Evolutionary Biology20(2): 577–87.10.1111/j.1420-9101.2006.01253.x17305824
HallM. D and EbertD.2012. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna. Proceedings of the Royal Society B279(1741): 3176–83.10.1098/rspb.2012.0509338572822593109
HarveyS. C. and OrbidansH. E.2011. All eggs are not equal: the maternal environment affects progeny reproduction and developmental fate in Caenorhabditis elegans. PLoS One6(10): 1–7.10.1371/journal.pone.0025840318677321991370
ImbrianiJ. L. and MankauR.1977. Ultrastructure of the nematode pathogen, Bacillus penetrans. Journal of Invertebrate Pathology30(3): 337–47.10.1016/0022-2011(77)90143-4
IrazoquiJ. E, UrbachJ. M and AusubelF. M.2010. Evolution of host innate defence: insights from C. elegans and primitive invertebrates. Nature Reviews – Immunology10(1): 47–58.10.1038/nri2689296505920029447
JosephS., MeketeT., SchmidtL. M., DanquahW. B. and TimperP.2017. Genotyping of single spore isolates of a Pasteuria penetrans population occurring in Florida using SNP-based markers. Journal of Applied Microbiology122(2): 389–401.10.1111/jam.1334527862724
LittleT. J, O’ConnorB., ColegraveN., WattK. and ReadA. F.2003. Maternal transfer of strain-specific immunity in an invertebrate. Current Biology13(6): 489–92.10.1016/S0960-9822(03)00163-5
LiuC., TimperP., JiP., MeketeT. and JosephS..2017. Influence of root exudates and soil on attachment of Pasteuria penetrans to Meloidogyne arenaria. Journal of Nematology49(3): 304–10.10.21307/jofnem-2017-076
MitchellS. E. and ReadA. F.2005. Poor maternal environment enhances offspring disease resistance in an invertebrate. Proceedings of the Royal Society B272(1581): 2601–07.10.1098/rspb.2005.3253155998416321782
MouraR. M., DavisE. L., LuzziB. M., BoermaH. R. and HusseyR. S.1993. Post-infectional development of Meloidogyne incognita on susceptible and resistant soybean genotypes. Nematropica23(1): 7–13.
MousseauT. A. and FoxC. W.1998. The adaptive significance of maternal effects. Trends in Ecology and Evolution13(10): 403–7.10.1016/S0169-5347(98)01472-4
NandakumarM. and TanM. W.2008. Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity. PLoS Genetics4(11): 1–18.10.1371/journal.pgen.1000273258160119023415
PalominosF. M, VerdugoL., GabaldonC., PollakB., Ortiz-SeverinJ., VarasM. A., ChavezF. P. and CalixtoA.2017. Transgenerational diapause as an avoidance strategy against bacterial pathogens in Caenorhabditis elegans. mBio8(5): 1–18.10.1128/mBio.01234-17563568829018118
PigeaultR., RiveroA., GarnierR. and GandonS.2016. Evolution of transgenerational immunity in invertebrates. Proceedings of the Royal Society B283(1839): 1–7.10.1098/rspb.2016.1136504689527683366
PillaiA., UenoS., ZhangH. and KatoY.2003. Induction of ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptides by bacterial injection: novel members of ASABF in the nematode Ascaris suum. Biochemical Journal371(3): 663–8.10.1042/bj20021948
PrasadN. G, ShakaradM., RajamaniM. and JoshiA.2003. Interaction between the effects of maternal and larval levels of nutrition on pre-adult survival in Drosophila melanogaster. Evolutionary Ecology Research5(6): 903–11.
PujolN., ZugastiO., WongD., CouillaultC., KurzC. L., SchulenburgH. and EwbankJ. J.2008. Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathogens4(7): 1–12.10.1371/journal.ppat.1000105245310118636113
RaoM. S., GowenS. R., PembrokeB. and Parvatha ReddyP.1997. Relationship of Pasteuria penetrans spore encumberance on juveniles of Meloidogyne incognita and their infection in adults. Nematologia mediterranea25(1): 129–31.
RossiterM. C.1996. Incidence and consequences of inherited environmental effects. Annual Review of Ecology and Systematics27: 451–76.10.1146/annurev.ecolsys.27.1.451
SayreR. M. and WerginW. P.1977. Bacterial parasite of a plant nematode: morphology and ultrastructure. Journal of Bacteriology129(2): 1091–1101.10.1128/jb.129.2.1091-1101.1977235050838678
SchlotzN., RoulinA., EbertD. and Martin-CreuzburgD.2016. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model. Comparative Biochemistry and Physiology, Part A201: 115–23.
StjernmanM. and LittleT. J.2011. Genetic variation for maternal effects on parasite susceptibility. Journal of Evolutionary Biology24(11): 2357–63.10.1111/j.1420-9101.2011.02363.x21848987
TimperP.2009. Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study. Journal of Nematology41(4): 291–9.
TriantaphyllouA. C.1973. Environmental sex differentiation of nematodes in relation to pest management. Annual Review of Phytopathology11: 441–62.10.1146/annurev.py.11.090173.002301
TrudgillD. L, BalaG., BlokV. C., DaudiA., DaviesK. G., GowenS. R., FargetteM., MaduluJ. D., MateilleT., MwageniW., NetscherC., PhillipsM. S., SawadogoA., TrivinoC. G. and VoyoukallouE.2000. The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology2(8): 823–45.10.1163/156854100750112789
TzortzakakisE. A., GowenS. R. and GoumasD. E.1996. Decreased ability of Pasteuria penetrans spores to attach to successive generations of Meloidogyne javanica. Fundamental and Applied Nematology19(2): 201–4.