Have a personal or library account? Click to login
Discovery and Identification of Meloidogyne Species Using COI DNA Barcoding Cover

Discovery and Identification of Meloidogyne Species Using COI DNA Barcoding

Open Access
|Oct 2018

Full Article

The term DNA-barcoding has multiple definitions. The earliest mention of barcoding in nematology was in 1998 by Dr Mark Blaxter, then of Edinburgh University, referring to the “(d)evelopment of a molecular barcode system for soil nematode identification” in the first volume of the Natural Environment Research Council Soil Biodiversity Newsletter (http://soilbio.nerc.ac.uk/newsletters.htm). The barcode he was referring to was the 18S nuclear (small subunit) ribosomal gene. Other gene regions proposed for DNA-barcoding soon followed, creating a broader definition that generally applied to the use of DNA sequences for species identification (Floyd et al., 2002; Blaxter, 2004; Powers, 2004). In 2003 a widely cited paper by Hebert et al. (2003) proposed a standardization of the barcode definition linked to the amplification of a 658 bp gene region within the cytochrome oxidase subunit 1 mitochondrial gene. The goal of this conceptual paper was the development of a global bioidentification system for animals. Considerable controversy immediately followed this publication with criticism ranging from theoretical concerns about the use of a single gene, the ability of an organelle gene to track species boundaries, and barcoding’s impact on the process of taxonomic investigation (DeSalle et al., 2005; Will et al., 2005). Practical concerns were expressed about lack of amplification with some groups, the designation of types, taxonomic resolution, and economic cost at the expense of traditional taxonomic approaches (Meyer and Paulay, 2005; Rubinoff et al., 2006; McFadden et al., 2011). Now, 15 years later, DNA-barcoding has become a component within the broader scope of integrated taxonomy and a routine tool for identification (Hodgetts et al., 2016; Janssen et al., 2016). As a diagnostic and discovery enterprise, DNA barcoding has generated thousands of publications, features biennial international conferences, has a dedicated database – BOLD, the Barcode of Life Database – and has multiple administrative structures such as the International Barcode of Life (IBOLD) and its affiliates (www.boldsystems.org/index.php/default).

Nematology was slow to adopt this formalized version of barcoding, perhaps due to poor amplification with the original “Folmer” primer sets (Folmer et al., 1994). Now multiple primer sets for amplification of nematode cytochrome oxidase c subunit 1 (COI) are available (Derycke et al., 2005, 2010; Prosser et al., 2013; Kiewnick et al., 2014; Powers et al., 2014; Janssen et al., 2016). These primer sets typically have limited taxonomic scope with amplifications specific for genera or in some cases extending across families and superfamilies (Powers et al., 2014). The objective of this study is to present a primer set used for the amplification of 721 to 724 bp of COI sequence from Meloidogyne. A maximum likelihood (ML) tree is provided to illustrate the ability of this gene region to discriminate among many described Meloidogyne species. The primers also function as a means to amplify DNA from juvenile stages in community analyses, possibly leading to new species discoveries. Contributions to a COI reference library should aid future taxonomic and ecological research in the genus.

Materials and Methods
Nematode collection

Most of the specimens DNA barcoded in this study were either specimens submitted to the UNL Nematology Diagnostics Clinic, specimens contributed by colleagues, or specimens collected during grant funded surveys (NSF projects DEB-1145440; USDA Multistate Project W3186).

Primer sequences

The primer set for amplification of the COI gene region were:

COI-F5-Mel – 5′-TGATTGATTTAGGTTCTGGAACTKSWTGAAC-3′

COI-R9-Mel – 5′-CATAATGAAAATGGGCAACAACATAATAAGTATC-3′

After removal of the primer sequences, amplification products from the Meloidogyne specimens were either 721 or 724 bp. GenBank sequences used in this study generally were 100 to 300 nucleotides shorter than sequences generated with the new primer set.

Amplification conditions

Nematodes amplified at the UNL Nematology Laboratory were individually smashed in 18 ul of sterile H20 with a transparent microfuge micropipette tip on a coverslip and added to a 0.5 ml microfuge tube. Nematode lysate was either amplified immediately or stored at −20°C. Amplification conditions were as follows: denaturation at 94°C for 5 min, followed by 45 cycles of denaturation at 94°C for 30 sec, annealing at 48.0°C for 30 sec, and extension at 72°C for 90 sec with a 0.5° per second ramp rate to 72°C. A final extension was performed at 72 °C for 5 min as described by Powers et al. (2014) and Olson et al. (2017). Polymerase chain reaction (PCR) products were separated and visualized on 1% agarose using 0.5XTBE and stained with ethidium bromide. PCR products of sufficiently high quality were cleaned and sent for sequencing of both strands by University of California–Davis DNA sequencing facility.

Data storage

Nucleotide sequences have been submitted to GenBank (accession numbers MH128384–MH128585) and the Barcode of Life Database (BOLD).

Phylogenetic analysis

Phylogenetic trees were constructed under ML and Neighbor Joining (NJ) criteria in MEGA version 6. Sequences were edited using CodonCode Aligner version 7.1 (www.codoncode.com/) and aligned using Muscle within MEGA version 6 (Tamura et al., 2013). Gap opening penalty was set at –400 with a gap extension penalty of –200. The General Time Reversible Model with Gamma distributed rates (GTR+G) was determined to be the best substitution model by Bayesian Information Criterion using the Best Fit Substitution Model tool in MEGA 6.0. ML trees used a use all sites option for gaps and 200 bootstrap replications to assess clade support.

Results

Figure 1 displays a ML tree of 322 Meloidogyne sequences including 117 sequences from GenBank and 205 sequences from the University of Nebraska–Lincoln Nematology Laboratory. ML partitions these sequences into 19 groups with bootstrap support values from 93 to 100 (Tables 1, 2, Fig. 1). Three unique GenBank sequences represent Meloidogyne haplanaria Eisenback et al., 2004, Meloidogyne duytsi Karssen et al., 1998, and Meloidogyne artiellia Franklin, 1961 as distinct from other sequences in the dataset, but without additional supporting sequences.

Table 1

COI sequence collection data for groups 2 to 19.

NIDGroupSpeciesLocalityHost/habitatGenBank accession #
P2030603 Meloidogyne enterolobii FloridaOrnamentals-NurseryMH128522
P1790693 M. enterolobii FloridaOrnamentals-NurseryMH128519
P1790703 M. enterolobii FloridaOrnamentals-NurseryMH128520
P1960903 M. enterolobii FloridaOrnamentals-NurseryMH128521
P2100133 M. enterolobii FloridaOrnamentals-NurseryMH128523
P2100143 M. enterolobii FloridaOrnamentals-NurseryMH128524
P2100713 M. enterolobii FloridaOrnamentals-urseryMH128529
P2100593 M. enterolobii FloridaOrnamentals-NurseryMH128527
P2100573 M. enterolobii FloridaOrnamentals-NurseryMH128525
P2100583 M. enterolobii FloridaOrnamentals-NurseryMH128526
P2100723 M. enterolobii FloridaOrnamentals-NurseryMH128530
P2100653 M. enterolobii FloridaOrnamentals-NurseryMH128528
N43144 Meloidogyne sp.Lance Rosier Unit, BITHa Loblolly pineMH128531
N43214 Meloidogyne sp.Lance Rosier Unit, BITHa Loblolly pineMH128532
N43795 Meloidogyne sp.Cove Mtn. Trail, GRSMb ChestnutMH128537
N43885 Meloidogyne sp.Cove Mtn. Trail, GRSMb ChestnutMH128538
N21105 Meloidogyne sp.GWMPc Fort Marcy earthworksMH128533
N39525 Meloidogyne sp.Turkey Creek, BITHa Baygall communityMH128534
N42855 Meloidogyne sp.Canyonlands South, BITHa MagnoliaMH128535
N42915 Meloidogyne sp.Canyonlands South, BITHa MagnoliaMH128536
P2140086 Meloidogyne partityla Dona Ana County, New MexicoPecanMH128540
P2140106 M. partityla Dona Ana County, New MexicoPecanMH128542
P2140096 M. partityla Dona Ana County, New MexicoPecanMH128541
N23386 M. partityla Neches Bottoms Unit, BITHa SandbarMH128539
P1210547 Meloidogyne hapla Gasconade County, MissouriPeonyMH128568
P2000317 M. hapla Cass County, NebraskaNurseryMH128577
N1637 M. hapla NebraskaWheatMH128543
P2000187 M. hapla Daggett County, UtahGrass pastureMH128575
P2000197 M. hapla Daggett County, UtahGrass pastureMH128576
P1780647 M. hapla OregonPotatoMH128570
P2000327 M. hapla Colfax County, NebraskaNurseryMH128578
N13767 M. hapla Fremont County, WyomingRed beanMH128558
N13777 M. hapla Fremont County, WyomingRed beanMH128559
P1790687 M. hapla New YorkGHMH128572
P1780637 M. hapla OregonPotatoMH128569
P2220837 M. hapla Portales, New MexicoGH cultureMH128579
P2220847 M. hapla Portales, New MexicoGH cultureMH128580
N14487 M. hapla GWMPc Waterfowl sanctuaryMH128560
N8577 M. hapla Goshen County, WyomingPotatoMH128554
N8597 M. hapla Goshen County, WyomingPotatoMH128555
N8607 M. hapla Goshen County, WyomingPotatoMH128556
N8617 M. hapla Goshen County, WyomingPotatoMH128557
P2000017 M. hapla Hot Springs County, WyomingAlfalfaMH128573
P2000027 M. hapla Hot Springs County, WyomingAlfalfaMH128574
N41247 M. hapla WyomingMH128561
N3187 M. hapla IdahoPotatoMH128544
N4977 M. hapla CaliforniaMH128551
N4897 M. hapla CaliforniaMH128550
N4987 M. hapla CaliforniaMH128552
P1790547 M. hapla Rhode IslandGH cultureMH128571
N3207 M. hapla IdahoPotatoMH128545
N3587 M. hapla IdahoPotatoMH128546
N3597 M. hapla IdahoPotatoMH128547
N4217 M. hapla Carbon County, MontanaAlfalfaMH128548
N4227 M. hapla Carbon County, MontanaAlfalfaMH128549
N8567 M. hapla Goshen County, WyomingPotatoMH128553
N70977 M. hapla NebraskaAlfalfaMH128562
N70987 M. hapla NebraskaAlfalfaMH128563
N71007 M. hapla NebraskaAlfalfaMH128565
N70997 M. hapla NebraskaAlfalfaMH128564
N85957 M. hapla Chalti, NepalPine forestMH128566
N86127 M. hapla Chalti, NepalPine forestMH128567
N42229 Meloidogyne sp.Canyonlands South, BITHa BeechMH128581
N42299 Meloidogyne sp.Canyonlands South, BITHa BeechMH128582
N84319 Meloidogyne sp.Canyonlands South, BITHa BeechMH128584
N84339 Meloidogyne sp.Canyonlands South, BITHa BeechMH128585
N82839 Meloidogyne sp.Mt. St. Hilaire, Quebec, CanadaHardwood forestMH128583
N443110 Meloidogyne sp.Cove Mtn. Trail, GRSMb ChestnutMH128463
N449610 Meloidogyne sp.Cove Mtn. Trail, GRSMb ChestnutMH128464
N449711 Meloidogyne sp.Cove Mtn. Trail, GRSMb ChestnutMH128465
N808412 Meloidogyne sp.Purchase Knob, GRSMb ChestnutMH128468
N812112 Meloidogyne sp.Cataloochee, GRSMb OakMH128470
N805812 Meloidogyne sp.Cataloochee, GRSMb ChestnutMH128467
N801212 Meloidogyne sp.Cataloochee, GRSMb ChestnutMH128466
N811112 Meloidogyne sp.Cataloochee, GRSMb OakMH128469
N147913 Meloidogyne sp.Roy E. Larsen Sandylands, BITHa Baygall communityMH128471
N396913 Meloidogyne sp.Turkey Creek, BITHa Baygall communityMH128472
P12905214 Meloidogyne oryzae Costa RicaRiceMH128473
P12905414 M. oryzae Costa RicaRiceMH128474
P16901114 Meloidogyne graminicola FloridaPurple nutsedgeMH128475
N21415 Meloidogyne exigua NicaraguaCoffeeMH128477
N21515 M. exigua NicaraguaCoffeeMH128478
N21315 M. exigua NicaraguaCoffeeMH128476
P19906916 Meloidogyne naasi Sanpete County, UtahGrassMH128480
P19907116 M. naasi Sanpete County, UtahGrassMH128481
P19907216 M. naasi Sanpete County, UtahGrassMH128482
N32616 M. naasi IdahoPotatoMH128479
P19208417 Meloidogyne fallax ScotlandGenomic DNAMH128507
P11903217 Meloidogyne chitwoodi New MexicoCultureMH128488
P11502617 M. chitwoodi Fort Garland, ColoradoSoil sampleMH128487
P12201017 M. chitwoodi ColoradoSoil sampleMH128489
P12204717 M. chitwoodi ColoradoSoil sampleMH128490
P12405617 M. chitwoodi CommercialPotatoMH128491
P12405717 M. chitwoodi CommercialPotatoMH128492
P12405917 M. chitwoodi CommercialPotatoMH128493
N714517 M. chitwoodi Elko County, NevadaPotatoMH128483
N714717 M. chitwoodi Elko County, NevadaPotatoMH128484
N714817 M. chitwoodi Elko County, NevadaPotatoMH128485
N714917 M. chitwoodi Elko County, NevadaPotatoMH128486
P17310017 M. chitwoodi CommercialPotatoMH128494
P17400117 M. chitwoodi CommercialPotatoMH128495
P17506817 M. chitwoodi IdahoPotatoMH128496
P17506917 M. chitwoodi IdahoPotatoMH128497
P17507017 M. chitwoodi IdahoPotatoMH128498
P17507117 M. chitwoodi IdahoPotatoMH128499
P17709217 M. chitwoodi TexasPotatoMH128500
P17709417 M. chitwoodi TexasPotatoMH128501
P17709817 M. chitwoodi TexasPotatoMH128502
P19201117 M. chitwoodi CommercialPotatoMH128504
P19201217 M. chitwoodi CommercialPotatoMH128505
P19201317 M. chitwoodi CommercialPotatoMH128506
P21108817 M. chitwoodi OregonPotatoMH128508
P21108917 M. chitwoodi OregonPotatoMH128509
P21201317 M. chitwoodi CaliforniaPotatoMH128510
P21201417 M. chitwoodi CaliforniaPotatoMH128511
P21201517 M. chitwoodi CaliforniaPotatoMH128512
P21201617 M. chitwoodi CaliforniaPotatoMH128513
P21303917 M. chitwoodi WashingtonPotatoMH128514
P21304017 M. chitwoodi WashingtonPotatoMH128515
P22108717 M. chitwoodi New MexicoPotatoMH128518
P21503217 M. chitwoodi WashingtonPotatoMH128517
P17802817 M. chitwoodi CommercialPotatoMH128503
P21503117 M. chitwoodi WashingtonPotatoMH128516

aBITH=Big Thicket National Preserve, Texas.

bGRSM=Great Smoky Mountains National Park, Tennessee and North Carolina.

cGWMP=George Washington Memorial Parkway, Virginia.

Table 2

COI sequences included in group 1.

NIDSpeciesLocalityHost/HabitatGenBank accession #
N137 M. konaensis HawaiiPineapplesMH128384
N138 M. konaensis HawaiiPineapplesMH128385
N7067 Meloidogyne sp.Charleston, MissouriSoybeanMH128414
N7066 Meloidogyne sp.Charleston, MissouriSoybeanMH128413
N7065 Meloidogyne sp.Charleston, MissouriSoybeanMH128412
N5777 Meloidogyne sp.NebraskaConservatoryMH128410
N5775 Meloidogyne sp.NebraskaConservatoryMH128409
N5771 Meloidogyne sp.Nebraska Phoenix dactylifera MH128408
N3836 Meloidogyne sp.NebraskaBananaMH128407
N2668 Meloidogyne sp.Sonora, MexicoGrapevineMH128406
N2667 Meloidogyne sp.Sonora, MexicoGrapevineMH128405
N2666 Meloidogyne sp.Sonora, MexicoGrapevineMH128404
N2665 Meloidogyne sp.Sonora, MexicoGrapevineMH128403
N2664 Meloidogyne sp.Sonora, MexicoGrapevineMH128402
N2663 Meloidogyne sp.Sonora, MexicoGrapevineMH128401
N2662 Meloidogyne sp.Sonora, MexicoGrapevineMH128400
N2661 Meloidogyne sp.Sonora, MexicoGrapevineMH128399
N2659 Meloidogyne sp.FloridaPeanutsMH128397
N7068 Meloidogyne sp.Clarkton, MissouriSoybeanMH128415
N7069 Meloidogyne sp.Clarkton, MissouriSoybeanMH128416
N7070 Meloidogyne sp.Clarkton, MissouriSoybeanMH128417
N7072 Meloidogyne sp.Clarkton, MissouriSoybeanMH128418
N7073 Meloidogyne sp.Clarkton, MissouriSoybeanMH128419
N7075 Meloidogyne sp.Clarkton, MissouriSoybeanMH128420
N8309 Meloidogyne sp.Charleston, MissouriSoybeanMH128421
P118094 Meloidogyne incognita MissouriPotatoMH128424
P120058 M. incognita ArizonaCultureMH128425
P120059 M. incognita ArizonaCultureMH128426
P121032 M. incognita MississippiPotatoMH128427
P121058 M. incognita Gasconade County, MissouriDaylilyMH128428
P121060 M. incognita Moniteau County, MissouriDaylilyMH128429
P156046 Meloidogyne floridensis FloridaGH cultureMH128430
P156048 M. floridensis FloridaGH cultureMH128431
P158036 Meloidogyne arenaria Alachua County, FloridaMH128432
P158037 M. arenaria Alachua County, FloridaMH128433
P160024 Meloidogyne sp.Alachua County, FloridaMH128434
P160025 Meloidogyne sp.Alachua County, FloridaMH128435
P160075 M. arenaria Alachua County, FloridaMH128437
P167014 Meloidogyne javanica MH128438
P167019 M. arenaria MH128439
P167020 M. arenaria MH128440
P167021 M. arenaria MH128441
P176014 Meloidogyne sp.MissouriCultureMH128443
P178075 M. arenaria TexasPotatoMH128444
P195088 M. javanica MH128445
P195089 M. javanica MH128446
P196023 M. javanica MH128447
P196024 M. javanica MH128448
P196025 M. javanica MH128449
P202009 Meloidogyne sp.IsraelCultureMH128450
P229051 Meloidogyne sp.FloridaCultureMH128451
P229053 Meloidogyne sp.FloridaCultureMH128452
P229056 Meloidogyne sp.FloridaCultureMH128453
P233011 Meloidogyne sp.CoffeeMH128457
P233014 Meloidogyne sp.CoffeeMH128458
P234004 Meloidogyne sp.MoroccoMH128459
P234005 Meloidogyne sp.MoroccoMH128460
P234006 Meloidogyne sp.MoroccoMH128461
P234007 Meloidogyne sp.MoroccoMH128462
P73085 Meloidogyne incognita Bonita, ArizonaPinto beansMH128422
P73088 M. incognita Bonita, ArizonaPinto beansMH128423
N5796 Meloidogyne sp.Ash Meadows NWR, NevadaMH128411
P230069 Meloidogyne incognita grahami West VirginiaCultureMH128454
P230095 M. incognita grahami West VirginiaCultureMH128456
P230070 M. incognita grahami West VirginiaCultureMH128455
N2660 Meloidogyne sp.FloridaPeanutMH128398
P167027 M. arenaria MH128442
N329 Meloidogyne sp.North DakotaPotatoMH128386
N330 Meloidogyne sp.North DakotaPotatoMH128387
N331 Meloidogyne sp.North DakotaPotatoMH128388
N332 Meloidogyne sp.North DakotaPotatoMH128389
N333 Meloidogyne sp.North DakotaPotatoMH128390
N334 Meloidogyne sp.North DakotaPotatoMH128391
N335 Meloidogyne sp.North DakotaPotatoMH128392
N336 Meloidogyne sp.North DakotaPotatoMH128393
N337 Meloidogyne sp.North DakotaPotatoMH128394
N348 Meloidogyne sp.North DakotaPotatoMH128395
N351 Meloidogyne sp.North DakotaPotatoMH128396
P160071 M. arenaria Alachua, FloridaCultureMH128436

Groups 1 to 3 form a clade characterized by the loss of a single amino acid (3 bp) resulting in a 721 bp sequenced region. This shared deletion unites M. haplanaria, and M. enterolobii Yang & Eisenback, 1983 with the so-called “major” tropical apomictic species of Meloidogyne (Elling, 2013). Included in this group are sequences representing M. arenaria (Neal, 1889) Chitwood, 1949, M. incognita (Kofoid & White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, as well as M. hispanica Hirschmann, 1986, M. floridensis Handoo et al., 2004, M. konaensis Eisenback, Bernard & Schnitt, 1995, M. luci Carneiro et al., 2014, and M. inornata Lordello, 1956 (Table 2). The same amino acid deletion is also found in unnamed group 12. Within group 1, the COI sequences are nearly identical with a few notable exceptions. Four substitutions are shared by three specimens identified as M. konaensis, including GenBank accession KU372176, identified as Meloidogyne sp. 2 TJ-2016 T316 on Beta vulgaris from Spain in Janssen et al. (2016). Two substitutions are shared by specimens identified as M. incognita grahami, originally described as M. grahami Golden & Slana, 1978, and considered distinct from M. incognita based on reproduction on NC-95 tobacco, a cultivar with resistance to M. incognita, plus a greater juvenile length and a distinctive perineal pattern (Golden and Slana, 1978).

Outside of clades 1-3 there are 11 other described species represented by a minimum of a single COI sequence. Meloidogyne hapla Chitwood, 1949 is represented by specimens from 10 U.S. states and two specimens from Nepal. There are multiple haplotypes within M. hapla and possibly some population substructure within the species. Group 17 identified as M. chitwoodi Golden, O’Bannon, Santo & Finley, 1980 and M. fallax Karssen, 1996 is virtually homogeneous except for a 5-bp difference between the two species. Within group 6, identified as M. partityla Kleynhans, 1986 one specimen collected from Big Thicket National Preserve, Texas comes from a native lowland plant community, compared with other specimens from New Mexico collected from commercial pecan (Carya illinoinensis (Wangenh.) K. Koch) production.

There are seven groups labeled as unnamed, all with sequence derived from j2 stage specimens except for N4431 and N4496 which were males collected from native chestnut (Castanea dentata (Marshall) Borkh.) in Great Smoky Mountains National Park (GRSM), North Carolina. All specimens in the unnamed groups 4, 5, 9 to 13 were isolated from soil samples within Gulf Coast or Eastern North American forests. Groups 9 and 12 were associated with American beech, (Fagus grandifolia Ehrh.) and chestnut or oak, respectively. Measurements of the unidentified juveniles are presented in Table 3, and Fig. 2 illustrates juveniles from three of the unnamed groups.

Table 3

Measurements of j2 Meloidogyne specimens from unnamed COI haplotype groups and reference species.

Haplotype group/species N LengthTail lengthStylet length a b c
Unnamed 42441 (430–452)421724.3 (22.7–25.9)3.8 (3.7–3.9)10.5 (10.3–10.8)
Unnamed 55431 (406–460)47 (40–53)14 (13–1525.4 914.4–30.8)3.9 (3.0–4.8)9.3 (8.0–10.1)
Unnamed 95393 (380–405)40 (38–44)15 (15–16)26.0 (25.5–26.7)4.0 (3.3–4.4)9.7 (9.2–10.1)
Unnamed 11 (Singleton A)1384421527.53.59.1
Unnamed 125353 (339–379)41 (38–43)15 (14–15)22.7 (21.2–25.0)3.5 (3.3–4.0)8.6 (8.0–8.9)
Unnamed 132490 (439–541)59 (57–62)1430.7 (30.4–31)3.9 (3.8–4.0)8.2 (7.7–8.6)
Meloidogyne ovalis 10370 (350–430)22 (21–24)8 (8–9)
Meloidogyne pini 30434 (376–493)44 (37–53)12.8 (11.4–14.1)25.7 (21.8–29.1)9.8 (7.5–11.8)
Meloidogyne camelliae 70501 (443–576)47 (40–56)11.6 (11.2–12)26 (21–30)3.110.7 (9.5–12
Meloidogyne querciana 70467 (411–541)46 (39–52)11.1 (10.2–11.6)30 (23–39)2.610 (7–13)
Meloidogyne megatyla 23416 (392–457)39.7 (31.6–45.1)14.6 (13.8–16.6)26 (22–29)7.1 (6.7–7.8)10.5 (9.5–13.5)
Fig. 1

Maximum likelihood tree of 322 Meloidogyne COI sequences created in MEGA 6.06 using GTR+G substitution model, with 200 bootstraps and a gap treatment of use all sites. Support values that designate clades and haplotype groups are circled. Clades that correspond to named and unnamed species or haplotype groups are numbered. Clades that include specimens with a single amino acid deletion are denoted by (Δ721 bp). Group 1 has been reduced to a box of species names. Sequences within Group 1 are presented in Table 2. A list of GenBank accession numbers for specimens included in Group 1 are found in supplementary Table 1.

Fig. 2

Selected Meloidogyne juveniles from unnamed groups. A, Entire body of NID 8084 in Group 12, from chestnut in Great Smoky Mountains National Park (GRSM); B, Anterior region of NID 8012 in Group 12 from chestnut in GRSM; C, Anterior region of NID 8283 from Group 9 from Mt. St. Hilaire, Quebec; D, Anterior region of NID 4379 in Group 5 from chestnut in GRSM.

Discussion

The COI gene region used as a diagnostic marker in this study appears to discriminate many of the described species of Meloidogyne. It does not separate the apomictic “major species” and their close relatives, except possibly M. konaensis and M. incognita grahami. Other mitochondrial genes such as NAD 5 may help resolve some of those species boundaries (Janssen et al., 2016). Aside from an inability to discriminate among the tropical clade 1 species, there are advantages to using COI as a DNA barcode. As a protein coding gene, nucleotide alignment is easier compared with non-protein coding genes. Taxonomic resolution is at the population and species level, although for many genera, mutational saturation, lineage extinctions, or inadequate sampling may obscure deeper relationships that aid in the recognition of species groupings. Nonetheless, COI barcodes in combination with an adequately curated sequence database, provide a powerful tool for identification and discovery. The limitation of DNA barcoding without a corresponding database is illustrated by the unnamed groups in the Meloidogyne dataset. For example, there was an expectation that focal samples from soil around individual chestnut and oak trees in GRSM might yield Meloidogyne querciana Golden, 1979 which was described from northern red oak (Quercus rubra L.) and chestnut hosts within the same ecoregion. Indeed Meloidogyne specimens were found in these samples, however, the barcode data demonstrate that multiple COI lineages were associated with chestnut and oaks in the park. Similarly, unnamed lineages were also discovered associated with American beech and baygall plant communities in Big Thicket National Preserve, Texas (www.nps.gov/bith/plant-communities.htm). These results indicate that considerable Meloidogyne diversity exists in the primary and secondary forests of eastern and southern United States. Characterization of this diversity by COI barcoding allows us to rule out described species with representation in the COI database, yet neither COI barcode nor morphometrics of juvenile specimens permits unequivocal assignment of a species name to these specimens. For these unknown specimens a more complete taxonomic analysis that includes obtaining adult stages will be required before a barcode sequence can be linked to a formal Latin binomial.

DOI: https://doi.org/10.21307/jofnem-2018-029 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Page range: 399 - 412
Published on: Oct 17, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Thomas Powers, Timothy Harris, Rebecca Higgins, Peter Mullin, Kirsten Powers, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.