Have a personal or library account? Click to login
SID: a new carbohydrate blood group system based on a well-characterized but still mysterious antigen of great pathophysiologic interest Cover

SID: a new carbohydrate blood group system based on a well-characterized but still mysterious antigen of great pathophysiologic interest

Open Access
|Apr 2023

References

  1. Macvie SI, Morton JA, Pickles MM. The reactions and inheritance of a new blood group antigen, Sda. Vox Sang 1967; 13:485–92.
  2. Renton PH, Howell P, Ikin EW. Anti-Sda new blood group antibody. Vox Sang 1967;13:493–501.
  3. Sanger R, Gavin J, Tippett P, Teesdale P, Eldon K. Plant agglutinin for another human blood-group. Lancet 1971;297: 1130.
  4. Ikuta S, Mukarami S. [An example of group O red cells agglutinable by Dolichos biflorus extract] (in Japanese). J Jap Soc Blood Transf 1962;9:37–8.
  5. Cazal P, Monis M, Caubel J, Brives J. [Hereditary dominant polyagglutinability: private antigen (Cad) corresponding to a public antibody and a lectin of Dolichos biflorus] (in French). Rev Fr Transfus 1968;11:209–21.
  6. International Society of Blood Transfusion. Red Cell Immunogenetics and Blood Group Terminology Working Party. Red cell immunogenetics and blood group terminology. Available from https://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology. Accessed 24 August 2022.
  7. Stenfelt L, Hellberg Å, Möller M, Thornton N, Larson G, Olsson ML. Missense mutations in the C-terminal portion of the B4GALNT2-encoded glycosyltransferase underlying the Sd(a−) phenotype. Biochem Biophys Rep 2019;19:100659.
  8. Veldhuisen B, Ligthart P, van der Mark-Zoet J, et al. Identification of a single homozygous mutation in the B4GALNT2 gene in individuals lacking the Sd(a) (SID) antigen on red blood cells (abstract). Vox Sang 2019;114:193(P-401).
  9. Stenfelt L, Nilsson J, Hellberg Å, et al. Glycoproteomic and phenotypic elucidation of B4GALNT2 expression variants in the SID histo-blood group system. Int J Mol Sci 2022;23:3936.
  10. Spitalnik S, Cox MT, Spennacchio J, Guenther R, Blumberg N. The serology of Sda effects of transfusion and pregnancy. Vox Sang 1982;42:308–12.
  11. Peetermans ME, Cole-Dergent J. Haemolytic transfusion reaction due to anti-Sda. Vox Sang 1970;18:67–70.
  12. Reznicek MJ, Cordle DG, Strauss RG. A hemolytic reaction implicating Sda antibody missed by immediate spin cross-match. Vox Sang 1992;62:173–5.
  13. Morton JA, Pickles MM, Terry AM. The Sda blood group antigen in tissues and body fluids. Vox Sang 1970;19:472–82.
  14. Morton JA, Pickles MM, Vanhegan RI. The Sda antigen in the human kidney and colon. Immunol Invest 1988;17:217–24.
  15. Cazal P, Monis M, Bizot M. [The Cad antigens and their relation to A antigens] (in French). Rev Fr Transfus 1971;14:321–34.
  16. Gerbal A, Lopez M, Chassaigne M, et al. [Cad antigen in the French population] (in French). Rev Fr Transfus Immunohematol 1976;19:415–29.
  17. Yamaguchi H, Okubo Y, Ogawa Y, Tanaka M. Japanese families with group O and B red cells agglutinable by Dolichos biflorus extract. Vox Sang 1973;25:361–9.
  18. Lewis M, Kaita H, Chown B, et al. A family with the rare red cell antigens Wra and “super” Sda. Vox Sang 1973;25:336–40.
  19. Sringarm S, Chupungart C, Giles CM. The use of Ulex europaeus and Dolichos biflorus extracts in routine ABO grouping of blood donors in Thailand: some unexpected findings. Vox Sang 1972;23:537–45.
  20. Conte R, Serafini-Cessi F. Comparison between the erythrocyte and urinary Sda antigen distribution in a large number of individuals from Emilia-Romagna, a region of northern Italy. Transfus Med 1991;1:47–9.
  21. Hammar L, Månsson S, Rohr T, et al. Lewis phenotype of erythrocytes and Leb-active glycolipid in serum of pregnant women. Vox Sang 1981;40:27–33.
  22. Jöud M, Möller M, Olsson ML. Identification of human glycosyltransferase genes expressed in erythroid cells predicts potential carbohydrate blood group loci. Sci Rep 2018;8:6040.
  23. Marcus DM, Cass LE. Glycosphingolipids with Lewis blood group activity: uptake by human erythrocytes. Science 1969;164:553–5.
  24. Reid ME, Lomas-Francis C, Olsson ML. The blood group antigen factsbook. 3rd ed. London: Academic Press, 2012.
  25. Lopez M, Gerbal A, Bony V, Salmon C. Cad antigen: comparative study of 50 samples. Vox Sang 1975;28:305–13.
  26. Bird GW. Comparative serological studies of the T, Tn and Cad receptors. Blut 1970;21:366–70.
  27. Sringarm S, Chiewsilp P, Tubrod J. Cad receptor in Thai blood donors. Vox Sang 1974;26:462–6.
  28. Lopez M, Gerbal A, Girard-Debord M, Salmon C. [Three subjects Aend Cad in a French family] (in French). Rev Fr Transfus Immunohematol 1977;20:457–66.
  29. Cazal P, Monis M, Bizot M. [Cad antigens in 1976] (in French). Rev Fr Transfus Immunohematol 1977;20:165–73.
  30. Leger R, Lines E, Cunningham K, Garratty G. A new form of polyagglutination related to Cad. Immunohematology 1996;12:69–71.
  31. Bird GW, Wingham J. Some serological properties of the Cad receptor. Vox Sang 1971;20:55–61.
  32. Blanchard D, Cartron JP, Fournet B, Montreuil J, van Halbeek H, Vliegenthart JF. Primary structure of the oligosaccharide determinant of blood group Cad specificity. J Biol Chem 1983;258:7691–5.
  33. Blanchard D, Piller F, Gillard B, Marcus D, Cartron J-P. Identification of a novel ganglioside on erythrocytes with blood group Cad specificity. J Biol Chem 1985;260:7813–6.
  34. Blanchard D, Capon C, Leroy Y, Cartron J-P, Fournet B. Comparative study of glycophorin A derived O-glycans from human Cad, Sd(a+) and Sd(a−) erythrocytes. Biochem J 1985;232:813–8.
  35. Daniels G, Ballif BA, Helias V, et al. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization. Blood 2015;125:3651–4.
  36. Donald AS, Soh CP, Watkins WM, Morgan WT. N-acetyl-D-galactosaminyl-beta-(1–>4)-d-galactose: a terminal non-reducing structure in human blood group Sda-active TammHorsfall urinary glycoprotein. Biochem Biophys Res Commun 1982;104:58–65.
  37. Donald AS, Yates AD, Soh CP, Morgan WT, Watkins WM. A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem Biophys Res Commun 1983;115:625–31.
  38. van Rooijen JJ, Kamerling JP, Vliegenthart JF. The abundance of additional N-acetyllactosamine units in N-linked tetraantennary oligosaccharides of human Tamm-Horsfall glycoprotein is a donor-specific feature. Glycobiology 1998;8:1065–75.
  39. Li Y, Cheng Y, Consolato F, et al. Genome-wide studies reveal factors associated with circulating uromodulin and its relationships to complex diseases. JCI Insight 2022;7:e157035.
  40. Capon C, Maes E, Michalski JC, Leffler H, Kim YS. Sd(a)-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon. Biochem J 2001;358:657–64.
  41. Malagolini N, Dall’Olio F, Di Stefano G, Minni F, Marrano D, Serafini-Cessi F. Expression of UDP-GalNAc:NeuAc alpha 2,3Gal beta-R beta 1,4(GalNAc to Gal) N-acetylgalacto-saminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res 1989;49:6466–70.
  42. Piller F, Blanchard D, Huet M, Cartron JP. Identification of a α-NeuAc-(2-3)-β-D-galactopyranosyl N-acetyl-β-D-galacto-saminyltransferase in human kidney. Carbohydr Res 1986;149: 171–84.
  43. Takeya A, Hosomi O, Kogure T. Identification and characterization of UDP-GalNAc: NeuAc alpha 2-3Gal beta 1-4Glc(NAc) beta 1-4(GalNAc to Gal)N-acetylgalactosaminyltransferase in human blood plasma. J Biochem 1987;101:251–9.
  44. Serafini-Cessi F, Malagolini N, Dall’Olio F. Characterization and partial purification of beta-N-acetylgalactosaminyl-transferase from urine of Sd(a+) individuals. Arch Biochem Biophys. 1988;266:573–82.
  45. Zhao C, Cooper DKC, Dai Y, Hara H, Cai Z, Mou L. The Sda and Cad glycan antigens and their glycosyltransferase, β1,4GalNAcT-II, in xenotransplantation. Xenotransplantation 2018;25:e12386.
  46. Li J, Yen TY, Allende ML, et al. Disulfide bonds of GM2 synthase homodimers: antiparallel orientation of the catalytic domains. J Biol Chem 2000;275:41476–86.
  47. Groux-Degroote S, Schulz C, Cogez V, et al. The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and post-Golgi sorting. FEBS J 2018;285: 3442–63.
  48. Dohi T, Yuyama Y, Natori Y, Smith PL, Lowe JB, Oshima M. Detection of N-acetylgalactosaminyltransferase mRNA which determines expression of Sda blood group carbohydrate structure in human gastrointestinal mucosa and cancer. Int J Cancer 1996;67:626–31.
  49. Lo Presti L, Cabuy E, Chiricolo M, Dall’Olio F. Molecular cloning of the human β1,4 N-acetylgalactosaminyltransferase responsible for the biosynthesis of the Sda histo-blood group antigen: the sequence predicts a very long cytoplasmic domain. J Biochem 2003;134:675–82.
  50. Montiel MD, Krzewinski-Recchi MA, Delannoy P, Harduin-Lepers A. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem J 2003; 373:369–79.
  51. Stenfelt L. Elucidating genetic and biochemical aspects of the P1 and Sda carbohydrate histo-blood group antigens [electronic resource]. Lund University, Faculty of Medicine, 2020. Available from https://lucris.lub.lu.se/ws/portalfiles/portal/83267163/Linn_Stenfelt_web.pdf. Accessed 24 August 2022.
  52. Dall’Olio F, Malagolini N, Chiricolo M, Trinchera M, Harduin-Lepers A. The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta 2014;1840:443–53.
  53. Wang HR, Hsieh CY, Twu YC, Yu LC. Expression of the human Sd(a) beta-1,4-N-acetylgalactosaminyltransferase II gene is dependent on the promoter methylation status. Glycobiology 2008;18:104–13.
  54. Kawamura YI, Toyota M, Kawashima R, et al. DNA hyper-methylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 2008;135:142–51.e143.
  55. Wavelet-Vermuse C, Groux-Degroote S, Vicogne D, et al. Analysis of the proximal promoter of the human colon-specific B4GALNT2 (Sda synthase) gene: B4GALNT2 is transcriptionally regulated by ETS1. Biochim Biophys Acta Gene Regul Mech 2021;1864:194747.
  56. Twu YC, Chen CP, Hsieh CY, et al. I branching formation in erythroid differentiation is regulated by transcription factor C/EBPα. Blood 2007;110:4526–34.
  57. Twu YC, Hsieh CY, Lin M, Tzeng CH, Sun CF, Yu LC. Phosphorylation status of transcription factor C/EBPα determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis. Blood 2010;115:2491–9.
  58. Dall’Olio F, Malagolini N, Serafini-Cessi F. Tissue distribution and age-dependent expression of β-4-N-acetylgalactosaminyl-transferase in guinea-pig. Biosci Rep 1987;7:925–32.
  59. Dall’Olio F, Malagolini N, Di Stefano G, Ciambella M, Serafini-Cessi F. Postnatal development of rat colon epithelial cells is associated with changes in the expression of the β1,4-N-acetylgalactosaminyl-transferase involved in the synthesis of Sda antigen of α2,6-sialyl-transferase activity towards N-acetyllactosamine. Biochem J 1990;270:519–24.
  60. Malagolini N, Santini D, Chiricolo M, Dall’Olio F. Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 2007;17:688–97.
  61. Groux-Degroote S, Wavelet C, Krzewinski-Recchi MA, et al. B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract. Int J Biochem Cell Biol 2014;53:442–9.
  62. Robbe-Masselot C, Maes E, Rousset M, Michalski JC, Capon C. Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj J 2009;26: 397–413.
  63. Daniels G. Human blood groups. 3rd ed. Oxford: Blackwell Scientific, 2013.
  64. Staubach F, Künzel S, Baines AC, et al. Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME J 2012;6:1345–55.
  65. Mohlke KL, Purkayastha AA, Westrick RJ, et al. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 1999;96:111–20.
  66. Johnsen JM, Levy GG, Westrick RJ, Tucker PK, Ginsburg D. The endothelial-specific regulatory mutation, Mvwf1, is a common mouse founder allele. Mamm Genome 2008;19: 32–40.
  67. Millar CM, Brown SA. Oligosaccharide structures of von Willebrand factor and their potential role in von Willebrand disease. Blood Rev 2006;20:83–92.
  68. Thomas PJ, Xu R, Martin PT. B4GALNT2 (GALGT2) gene therapy reduces skeletal muscle pathology in the FKRP P448L mouse model of limb girdle muscular dystrophy 2I. Am J Pathol 2016;186:2429–48.
  69. McMorran BJ, Miceli MC, Baum LG. Lectin-binding characterizes the healthy human skeletal muscle glycopheno-type and identifies disease-specific changes in dystrophic muscle. Glycobiology 2017;27:1134–43.
  70. Martin PT, Zygmunt DA, Ashbrook A, et al. Short-term treatment of golden retriever muscular dystrophy (GRMD) dogs with rAAVrh74.MHCK7.GALGT2 induces muscle glycosylation and utrophin expression but has no significant effect on muscle strength. PLoS One 2021;16:e0248721.
  71. Li PT, Liao CJ, Wu WG, Yu LC, Chu ST. Progesterone-regulated B4galnt2 expression is a requirement for embryo implantation in mice. Fertil Steril 2011;95:2404–9, 2409.e2401–3.
  72. Ben Jemaa S, Ruesche J, Sarry J, Woloszyn F, Lassoued N, Fabre S. The high prolificacy of D’man sheep is associated with the segregation of the FecLL mutation in the B4GALNT2 gene. Reprod Domest Anim 2019;54:531–7.
  73. Guo X, Wang X, Liang B, et al. Molecular cloning of the B4GALNT2 gene and its single nucleotide polymorphisms association with litter size in small tail Han sheep. Animals 2018;8:160.
  74. Cartron JP, Prou O, Luilier M, Soulier JP. Susceptibility to invasion by Plasmodium falciparum of some human erythrocytes carrying rare blood group antigens. Br J Haematol 1983;55:639–47.
  75. Heaton BE, Kennedy EM, Dumm RE, et al. A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor. Cell Rep 2017;20:1503–12.
  76. Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021;311:151487.
  77. Varki A. Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2017.
  78. Kawamura YI, Kawashima R, Fukunaga R, et al. Introduction of Sd(a) carbohydrate antigen in gastrointestinal cancer cells eliminates selectin ligands and inhibits metastasis. Cancer Res 2005;65:6220–7.
  79. Pucci M, Gomes Ferreira I, Malagolini N, Ferracin M, Dall’Olio F. The Sd(a) synthase B4GALNT2 reduces malignancy and stemness in colon cancer cell lines independently of sialyl Lewis X inhibition. Int J Mol Sci 2020;21:6558.
  80. Bianco T, Farmer BJ, Sage RE, Dobrovic A. Loss of red cell A, B, and H antigens is frequent in myeloid malignancies. Blood 2001;97:3633–9.
  81. Pucci M, Malagolini N, Dall’Olio F. Glycosyltransferase B4GALNT2 as a predictor of good prognosis in colon cancer: lessons from databases. Int J Mol Sci 2021;22:4331.
  82. Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science 2017;357:eaan2507.
  83. Tanaka-Okamoto M, Hanzawa K, Mukai M, Takahashi H, Ohue M, Miyamoto Y. Identification of internally sialylated carbohydrate tumor marker candidates, including Sda/CAD antigens, by focused glycomic analyses utilizing the substrate specificity of neuraminidase. Glycobiology 2018;28:247–60.
  84. Groux-Degroote S, Vicogne D, Cogez V, Schulz C, Harduin-Lepers A. B4GALNT2 controls Sda and SLex antigen biosynthesis in healthy and cancer human colon. Chembiochem 2021;22:3381–90.
  85. Dall’Olio F, Pucci M, Malagolini N. The cancer-associated antigens sialyl Lewisa/x and Sda: two opposite faces of terminal glycosylation. Cancers (Basel) 2021;13:5273.
DOI: https://doi.org/10.21307/immunohematology-2023-002 | Journal eISSN: 1930-3955 | Journal ISSN: 0894-203X
Language: English
Page range: 1 - 10
Published on: Apr 5, 2023
Published by: American National Red Cross
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 L. Stenfelt, Å. Hellberg, M.L. Olsson, published by American National Red Cross
This work is licensed under the Creative Commons Attribution 4.0 License.