Have a personal or library account? Click to login
Yes, MAM: how the cancer-related EMP3 protein became a regulator of erythropoiesis and the key protein underlying a new blood group system Cover

Yes, MAM: how the cancer-related EMP3 protein became a regulator of erythropoiesis and the key protein underlying a new blood group system

By: M.D. Ilsley,  J.R. Storry and  M.L. Olsson  
Open Access
|Dec 2022

References

  1. Anderson G, Donnellv S, Bradv T, Mintz PD, Sinor L, Daniels GL. An antibody to a high-frequency antigen found on red-cells, platelets, lymphocytes, and monocytes. Transfusion 1993;33:S23.
  2. Montgomery WM Jr, Nance SJ, Donnelly SF, et al. MAM: a “new” high-incidence antigen found on multiple cell lines. Transfusion 2000;40:1132–9. doi:10.1046/j.1537-2995.2000. 40091132.x
  3. Clayton A. Case study of an antenatal patient with an extremely rare antibody to a high-incidence antigen (anti-MAM). HAA Abstracts 2015;P175.
  4. Burgos A, Martinez V, Velliquette RW, et al. First report of anti-MAM in pregnancy without evidence of clinical HDFN or thrombocytopenia. Transfusion 2012;52(Suppl):26A.
  5. Thornton N, Karamatic Crew V, Tilley L, et al. Disruption of the tumour-associated EMP3 enhances erythroid proliferation and causes the MAM-negative phenotype. Nat Commun 2020;11:3569. doi:10.1038/s41467-020-17060-4
  6. Li W, Fernandes BJ, Denomme GA. MAM is an N-glycan linked carbohydrate antigen expressed on all blood cells. Transfusion 2002;40:10S.
  7. Baglow L, Tilley L, Karamatic Crew V, et al. A novel EMP3 null allele detected in a patient with the MAM-phenotype. Vox Sang 2021;116(Suppl 1):32–3.
  8. Liehr T, Kuhlenbäumer G, Wulf P, et al. Regional localization of the human epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, EMP3) to 12p12.3, 16p13.2, and 19q13.3. Genomics 1999;58:106–8. doi:10.1006/geno.1999.5803
  9. Taylor V, Suter U. Epithelial membrane protein-2 and epithelial membrane protein-3: two novel members of the peripheral myelin protein 22 gene family. Gene 1996;175:115–20. doi:10.1016/0378-1119(96)00134-5
  10. Alaminos M, Dávalos V, Ropero S, et al. EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res 2005;65:2565–71. doi:10.1158/0008-5472.can-04-4283
  11. Kunitz A, Wolter M, van den Boom J, et al. DNA hyper-methylation and aberrant expression of the EMP3 gene at 19q13.3 in human gliomas. Brain Pathol 2007;17:363–70. doi:10.1111/j.1750-3639.2007.00083.x
  12. Lv Q, Xiao W, Xiong Z, et al. Identification of candidate biomarker EMP3 and its prognostic potential in clear cell renal cell carcinoma. Front Biosci 2021;26:1176–90. doi:10.52586/5018
  13. Hsieh YH, Hsieh SC, Lee CH, et al. Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway. Oncotarget 2015;6:34859–74. doi:10.18632/oncotarget.5414
  14. Guo Q, Jing FJ, Xu W, et al. Ubenimex induces autophagy inhibition and EMT suppression to overcome cisplatin resistance in GC cells by perturbing the CD13/EMP3/PI3K/ AKT/NF-κB axis. Aging 2019;12:80–105. doi:10.18632/aging. 102598
  15. Han M, Xu W. EMP3 is induced by TWIST1/2 and regulates epithelial-to-mesenchymal transition of gastric cancer cells. Tumour Biol 2017;39:1010428317718404. doi:10.1177/1010428317718404
  16. Wang YW, Li WM, Wu WJ, et al. Potential significance of EMP3 in patients with upper urinary tract urothelial carcinoma: crosstalk with ErbB2-PI3K-Akt pathway. J Urol 2014;192:242–51. doi:10.1016/j.juro.2013.12.001
  17. Zhou W, Jiang Z, Li X, et al. EMP3 overexpression in primary breast carcinomas is not associated with epigenetic aberrations. J Korean Med Sci 2009;24:97–103. doi:10.3346/ jkms.2009.24.1.97
  18. Hong XC, Fen YJ, Yan GC, et al. Epithelial membrane protein 3 functions as an oncogene and is regulated by microRNA-765 in primary breast carcinoma. Mol Med Rep 2015;12:6445–50. doi:10.3892/mmr.2015.4326
  19. Evtimova V, Zeillinger R, Weidle UH. Identification of genes associated with the invasive status of human mammary carcinoma cell lines by transcriptional profiling. Tumour Biol 2003;24:189–98. doi:10.1159/000074429
  20. Mackay A, Jones C, Dexter T, et al. cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 2003;22:2680–8. doi:10.1038/sj.onc.1206349
  21. Fumoto S, Hiyama K, Tanimoto K, et al. EMP3 as a tumor suppressor gene for esophageal squamous cell carcinoma. Cancer Lett 2009;274:25–32. doi:10.1016/j.canlet.2008.08.021
  22. Xue Q, Zhou Y, Wan C, et al. Epithelial membrane protein 3 is frequently shown as promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer. Exp Mol Pathol 2013;95:313–8. doi:10.1016/j.yexmp.2013.07.001
  23. Zheng Z, Luan X, Zha J, et al. TNF-alpha inhibits the migration of oral squamous cancer cells mediated by miR-765-EMP3-p66Shc axis. Cell Signal 2017;34:102–9. doi:10.1016/j. cellsig.2017.03.009
  24. Ma Q, Zhang Y, Liang H, et al. EMP3, which is regulated by miR-663a, suppresses gallbladder cancer progression via interference with the MAPK/ERK pathway. Cancer Lett 2018;430:97–108. doi:10.1016/j.canlet.2018.05.022
  25. Liu A, Zhang D, Yang X, Song Y. Estrogen receptor alpha activates MAPK signaling pathway to promote the development of endometrial cancer. J Cell Biochem 2019;120:17593–601. doi:10.1002/jcb.29027
  26. Jiang L, Li XP, Dai YT, et al. Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute myelogenous leukemia identifies the subtype with poor outcome. Proc Natl Acad Sci U S A 2020;117:20117–26. doi:10.1073/pnas. 2003900117
  27. Kim EK, Koo JS. Expression of epithelial membrane protein (EMP) 1, EMP 2, and EMP 3 in thyroid cancer. Histol Histopathol 2022;37:51–61. doi:10.14670/HH-18-378
  28. Mellai M, Piazzi A, Caldera V, et al. Promoter hypermethylation of the EMP3 gene in a series of 229 human gliomas. BioMed Res Int 2013;2013:756302. doi:10.1155/2013/756302
  29. Pasini A, Iorio P, Bianchi E, et al. LOH 19q indicates shorter disease progression-free interval in low-grade oligodendrogliomas with EMP3 methylation. Oncol Rep 2012;28:2271–7. doi:10.3892/or.2012.2047
  30. Yue H, Xu Q, Xie S. High EMP3 expression might independently predict poor overall survival in glioblastoma and its expression is related to DNA methylation. Medicine 2018;97:e9538. doi:10.1097/md.0000000000009538
  31. Guo XX, Su J, He XF. A 4-gene panel predicting the survival of patients with glioblastoma. J Cell Biochem 2019;120:16037–43. doi:10.1002/jcb.28883
  32. Shu C, Wang Q, Yan X, Wang J. Whole-genome expression microarray combined with machine learning to identify prognostic biomarkers for high-grade glioma. J Mol Neurosci 2018;64:491–500. doi:10.1007/s12031-018-1049-7
  33. Jun F, Hong J, Liu Q, et al. Epithelial membrane protein 3 regulates TGF-β signaling activation in CD44-high glioblastoma. Oncotarget 2017;8:14343–58. doi:10.18632/ oncotarget.11102
  34. Martija AA, Pusch S. The multifunctional role of EMP3 in the regulation of membrane receptors associated with IDH-wild-type glioblastoma. Int J Mol Sci 2021 May 17;22:5261. doi:10.3390/ijms22105261
  35. Huang RY, Kuay KT, Tan TZ, et al. Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget 2015;6:22098–113. doi:10.18632/oncotarget.4300
  36. Kusumoto Y, Okuyama H, Shibata T, et al. Epithelial membrane protein 3 (Emp3) downregulates induction and function of cytotoxic T lymphocytes by macrophages via TNF-alpha production. Cell Immunol 2018;324:33–41. doi:10.1016/j. cellimm.2017.12.001
  37. Kahm YJ, Kim RK, Jung U, Kim IG. Epithelial membrane protein 3 regulates lung cancer stem cells via the TGF-β signaling pathway. Int J Oncol. 2021;59:80. doi: 10.3892/ ijo.2021.5261.
  38. Cha YJ, Koo JS. Expression of EMP1, EMP2, and EMP3 in breast phyllodes tumors. PLoS One 2020;15:e0238466. doi:10.1371/journal.pone.0238466
  39. Christians A, Poisel E, Hartmann C, von Deimling A, Pusch S. Characterization of the epithelial membrane protein 3 interaction network reveals a potential functional link to mitogenic signal transduction regulation. Int J Cancer 2019;145:461–73. doi:10.1002/ijc.32107
  40. Xu Q. The Indian blood group system. Immunohematology 2011;27:89–93.
  41. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 2018;11:64. doi:10.1186/s13045-018-0605-5
  42. Pályi-Krekk Z, Barok M, Kovács T, et al. EGFR and ErbB2 are functionally coupled to CD44 and regulate shedding, internalization and motogenic effect of CD44. Cancer Lett 2008;263:231–42. doi:10.1016/j.canlet.2008.01.014
  43. Midgley AC, Rogers M, Hallett MB, et al. Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 2013;288:14824–38. doi:10.1074/jbc.M113.451336
DOI: https://doi.org/10.21307/immunohematology-2022-055 | Journal eISSN: 1930-3955 | Journal ISSN: 0894-203X
Language: English
Page range: 130 - 136
Published on: Dec 28, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 M.D. Ilsley, J.R. Storry, M.L. Olsson, published by American National Red Cross
This work is licensed under the Creative Commons Attribution 4.0 License.