References
- Addison, P. S. A. 2002. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine, and Finance Institute of Physics Pub, Abingdon, Available at: https://doi.org/10.1201/9781420033397.
- Ben Mahmud, H., Leong, V. H. and Lestariono, Y. 2020. Sand production: a smart control framework for risk mitigation. Journal of Petroleum 6(1): 1–13, Available at: https://doi.org/10.1016/j.petlm.2019.04.002.
- Boyd, J. W. R. and Varley, J. 2001. The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science 56: 1749, Available at: https://doi.org/10.1016/S0009-2509(00)00540-6.
- Burt, P. and Adelson, E. 1983. A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2(4): 217–236, Available at: https://doi.org/10.1145/245.247.
- Cohen, M. X. 2019. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 199: 81–86, Available at: https://doi.org/10.1016/j.neuroimage.2019.05.048.
- Emiliani, C. N., et al. 2011. Improved Sand Management Strategy: Testing of Sand Monitors under Controlled Conditions. Society of Petroleum Engineers, Denvor, Available at: https://doi.org/10.2118/146679-MS.
- Evgeny, N. 2019. New α-aminophosphonates as corrosion inhibitors for oil and gas pipelines protection. Civil Engineering Jounal 5(4), Available at: https://doi.org/10.28991/cej-2019-03091303.
- Feydo, M., Pellegrino, B. and Strachan, S. 2017. Non-intrusive Ultrasonic Corrosion-rate Measurement in lieu of Manual and Intrusive Methods, in CORROSION 2017 NACE International, New Orleans, LO, p. 15.
- Gang, W., et al. 2015. Vibration sensor approaches for the monitoring of sand production in Bohai Bay. Journal of Shock and Vibration 2015: 1–16, Available at: https://doi.org/10.1155/2015/591780.
- Gao, D., Nouri, et al. 2015. Sand rate model and data processing method for non-intrusive ultrasonic sand monitoring in flow pipeline. Journal of Petroleum Science and Engineering 134(Supplement C): 30–39, Available at: https://doi.org/10.1016/j.petrol.2015.07.001.
- Ibrahim, M. and Haugsdal, T. 2008. Optimum Procedures for Calibrating Acoustic Sand Detector, Gas Field Case. Petroleum Society of Canada, Calgary, Available at: https://doi.org/10.2118/2008-025.
- Jaimes Plata, M., et al. 2012. Sand exclusion or management: multidisciplinary approach in decision making. SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, Mexico City, Available at: https://doi.org/10.2118/152887-MS.
- Kaiser, T. M. V., Wilson, S. and Venning, L. A. 2000. Inflow analysis and optimization of slotted liners. 2000 SPE/Petroleum Society of CIM International Conference on Horizontal Well Technology. Society of Petroleum Engineers, Calgary, Available at: https://doi.org/10.2118/65517-MS.
- Matanovic, D., Cikes, M. and Moslavac, B. 2012. Sand Control in Well Construction and Operation Springer, Berlin and Heidelberg, Available at: https://doi.org/10.1007/978-3-642-25614-1.
- Musa, L. A., Temisanren, T. and Appah, D. 2005. Establishing actual quantity of sand using an ultrasonic sand detector: the Niger Delta experience. 29th Annual SPE International Technical Conference and Exhibition. Society of Petroleum Engineers, Abuja, Available at: https://doi.org/10.2118/98820-MS.
- Oyeneyin, B. 2015. Introduction to sand and condition monitoring strategies for asset integrity. Developments in Petroleum Science: Integrated Sand Management For Effective Hydrocarbon Flow Assurance 63: 173–189, Available at: https://doi.org/10.1016/B978-0-444-62637-0.00005-1.
- Polikar, R. 2006. The Wavelet Tutorial, University of Rowan in Glassboro, New Jersey, Available at: https://doi.org/10.1515/IJSL.2006.028.
- Sampson, M., McLaury, B. S. and Shirazi, S. A. 2002. A Method for Relating Acoustic Sand Monitor Output to Sand Rate and Particle Kinetic Energy, in CORROSION 2002 NACE International, Denver, CO, pp. 1–10.
- Seraj, H. and Evans, B. 2020. Improving sand flow rate measurement of commercial ASDs and comparison with ultrasonic spectral analysis and filtering. IET Science, Measurement & Technology, 14(9): 746–752, Available at: https://doi.org/10.1049/iet-smt.2019.0479.
- Shukla, K. K. 2013. Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems Springer, London.
- Sinclair, A. N. and Malkin, R. 2020. Sensors for Ultrasonic NDT in Harsh Environments MDPI- Multidisciplinary Digital Publishing Institute, Bristol.