Have a personal or library account? Click to login
Improving sand flow rate measurement using the wavelet transform and ultrasonic sensors Cover

Improving sand flow rate measurement using the wavelet transform and ultrasonic sensors

By: H. Seraj,  B. Evans and  M. Sarmadivaleh  
Open Access
|Feb 2021

References

  1. Addison, P. S. A. 2002. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine, and Finance Institute of Physics Pub, Abingdon, Available at: https://doi.org/10.1201/9781420033397.
  2. Ben Mahmud, H., Leong, V. H. and Lestariono, Y. 2020. Sand production: a smart control framework for risk mitigation. Journal of Petroleum 6(1): 1–13, Available at: https://doi.org/10.1016/j.petlm.2019.04.002.
  3. Boyd, J. W. R. and Varley, J. 2001. The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science 56: 1749, Available at: https://doi.org/10.1016/S0009-2509(00)00540-6.
  4. Burt, P. and Adelson, E. 1983. A multiresolution spline with application to image mosaics. ACM Transactions on Graphics 2(4): 217–236, Available at: https://doi.org/10.1145/245.247.
  5. Cohen, M. X. 2019. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 199: 81–86, Available at: https://doi.org/10.1016/j.neuroimage.2019.05.048.
  6. Emiliani, C. N., et al. 2011. Improved Sand Management Strategy: Testing of Sand Monitors under Controlled Conditions. Society of Petroleum Engineers, Denvor, Available at: https://doi.org/10.2118/146679-MS.
  7. Evgeny, N. 2019. New α-aminophosphonates as corrosion inhibitors for oil and gas pipelines protection. Civil Engineering Jounal 5(4), Available at: https://doi.org/10.28991/cej-2019-03091303.
  8. Feydo, M., Pellegrino, B. and Strachan, S. 2017. Non-intrusive Ultrasonic Corrosion-rate Measurement in lieu of Manual and Intrusive Methods, in CORROSION 2017 NACE International, New Orleans, LO, p. 15.
  9. Gang, W., et al. 2015. Vibration sensor approaches for the monitoring of sand production in Bohai Bay. Journal of Shock and Vibration 2015: 1–16, Available at: https://doi.org/10.1155/2015/591780.
  10. Gao, D., Nouri, et al. 2015. Sand rate model and data processing method for non-intrusive ultrasonic sand monitoring in flow pipeline. Journal of Petroleum Science and Engineering 134(Supplement C): 30–39, Available at: https://doi.org/10.1016/j.petrol.2015.07.001.
  11. Ibrahim, M. and Haugsdal, T. 2008. Optimum Procedures for Calibrating Acoustic Sand Detector, Gas Field Case. Petroleum Society of Canada, Calgary, Available at: https://doi.org/10.2118/2008-025.
  12. Jaimes Plata, M., et al. 2012. Sand exclusion or management: multidisciplinary approach in decision making. SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, Mexico City, Available at: https://doi.org/10.2118/152887-MS.
  13. Kaiser, T. M. V., Wilson, S. and Venning, L. A. 2000. Inflow analysis and optimization of slotted liners. 2000 SPE/Petroleum Society of CIM International Conference on Horizontal Well Technology. Society of Petroleum Engineers, Calgary, Available at: https://doi.org/10.2118/65517-MS.
  14. Matanovic, D., Cikes, M. and Moslavac, B. 2012. Sand Control in Well Construction and Operation Springer, Berlin and Heidelberg, Available at: https://doi.org/10.1007/978-3-642-25614-1.
  15. Musa, L. A., Temisanren, T. and Appah, D. 2005. Establishing actual quantity of sand using an ultrasonic sand detector: the Niger Delta experience. 29th Annual SPE International Technical Conference and Exhibition. Society of Petroleum Engineers, Abuja, Available at: https://doi.org/10.2118/98820-MS.
  16. Oyeneyin, B. 2015. Introduction to sand and condition monitoring strategies for asset integrity. Developments in Petroleum Science: Integrated Sand Management For Effective Hydrocarbon Flow Assurance 63: 173–189, Available at: https://doi.org/10.1016/B978-0-444-62637-0.00005-1.
  17. Polikar, R. 2006. The Wavelet Tutorial, University of Rowan in Glassboro, New Jersey, Available at: https://doi.org/10.1515/IJSL.2006.028.
  18. Sampson, M., McLaury, B. S. and Shirazi, S. A. 2002. A Method for Relating Acoustic Sand Monitor Output to Sand Rate and Particle Kinetic Energy, in CORROSION 2002 NACE International, Denver, CO, pp. 1–10.
  19. Seraj, H. and Evans, B. 2020. Improving sand flow rate measurement of commercial ASDs and comparison with ultrasonic spectral analysis and filtering. IET Science, Measurement & Technology, 14(9): 746–752, Available at: https://doi.org/10.1049/iet-smt.2019.0479.
  20. Shukla, K. K. 2013. Efficient Algorithms for Discrete Wavelet Transform: With Applications to Denoising and Fuzzy Inference Systems Springer, London.
  21. Sinclair, A. N. and Malkin, R. 2020. Sensors for Ultrasonic NDT in Harsh Environments MDPI- Multidisciplinary Digital Publishing Institute, Bristol.
Language: English
Page range: 1 - 13
Submitted on: Oct 24, 2020
|
Published on: Feb 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 H. Seraj, B. Evans, M. Sarmadivaleh, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.