Have a personal or library account? Click to login

1/10th scale autonomous vehicle based on convolutional neural network

Open Access
|Aug 2020

References

  1. Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., Roy, G., Sun, T., Tao, Y., Townsend, B., et al. 2019. DeepRacer: educational autonomous racing platform for experimentation with Sim2Real reinforcement learning. arXiv preprint arXiv:1911.01562.
  2. Bechtel, M. G., Mcellhiney, E., Kim, M. and Yun, H. 2018. DeepPicar: a low-cost deep neural network-based autonomous car. 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Hakodate, pp. 11–21, doi: 10.1109/RTCSA.2018.00011.
  3. Behringer, R. et al. 2004. The DARPA grand challenge – development of an autonomous vehicle. IEEE Intelligent Vehicles Symposium, 2004, Parma, pp. 226-231, doi: 10.1109/IVS.2004.1336386.
  4. Blaga, B., Deac, M., Al-doori, R. W. Y., Negru, M. and Daˇnescu, R. 2018. Miniature autonomous vehicle development on Raspberry Pi. 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, pp. 229–236, doi: 10.1109/ICCP.2018.8516589.
  5. Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J. and Zieba, K. 2016. End to end learning for self-driving cars. arXiv:1604.07316, April, available at: http://arxiv.org/abs/1604.07316.
  6. Goldfain, B., Drews, P., You, C., Barulic, M., Velev, O., Tsiotras, P. and Rehg, J. M. 2019. Autorally: an open platform for aggressive autonomous driving. IEEE Control Systems Magazine 39(1): 26–55.
  7. Gui, P., Tang, L. and Mukhopadhyay, S. 2017. Tree pruning robot tilting control using fuzzy logic. Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), 978-1-5090-6526-4/17/$31.00 © 2017, pp. 153–157.
  8. How, J. P., Behihke, B., Frank, A., Dale, D. and Vian, J. 2008. Real-time indoor autonomous vehicle test environment. IEEE Control Systems Magazine 28(2): 51–64, doi: 10.1109/MCS.2007.914691.
  9. Karaman, S. et al. 2017. Project-based, collaborative, algorithmic robotics for high school students: Programming self-driving race cars at MIT. 2017 IEEE Integrated STEM Education Conference (ISEC), Princeton, NJ, pp. 195–203, doi: 10.1109/ISECon.2017.7910242.
  10. Leni, A. E. S. 2017. Instance vehicle monitoring and tracking with internet of things using arduino. International Journal on Smart Sensing and Intelligent Systems 10: 123–136.
  11. Man, C. K. Y. L. L., Koonjul, Y. and Nagowah, L. 2018. A low cost autonomous unmanned ground vehicle. Future Computing and Informatics Journal 3(2): 304–320.
  12. Miao, X., Li, S. and Shen, H. 2012. On-board lane detection system for intelligent vehicle based on monocular vision. International Journal of Smart Sensing and Intelligent System 5(4): 957–972.
  13. Nag, A., Menzies, B. and Mukhopadhyay, S. C. 2018. Performance analysis of flexible printed sensors for robotic arm applications. Sensors and Actuators A: Physical 276: 226–236.
  14. O’Kelly, M., Sukhil, V., Abbas, H., Harkins, J., Kao, C., Pant, Y., Mangharam, R., Agarwal, D., Behl, M., Burgio, P. and Bertogna, M. 2019. F1/10: an open-source autonomous cyber-physical platform. ArXiv, abs/1901.08567.
  15. Olgun, M. C., Baytar, Z., Akpolat, K. M. and Sahingoz, O. K. 2018. Autonomous vehicle control for lane and vehicle tracking by using deep learning via vision. 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, pp. 1–7, doi: 10.1109/CEIT.2018.8751764.
  16. Pannu, G., Ansari, M. and Gupta, P. 2015. design and implementation of autonomous car using Raspberry Pi’. International Journal of Computer Applications 113(9): 22–29.
  17. Patel, N. et al. 2019. A deep learning gated architecture for UGV navigation robust to sensor failures. Robotics and Autonomous Systems 116: 80–97.
  18. Paull, L., Tani, J., Ahn, H., Alonso-Mora, J., Carlone, L., Cap, M., Chen, Y. F., Choi, C., Dusek, J., Fang, Y. et al. 2017. Duckietown: an open, inexpensive and flexible platform for autonomy education and research. 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 1497–1504.
  19. Pomerleau, D. A. 1989. Alvinn, an autonomous land vehicle in a neural network. In Advances in Neural Information Processing Systems (NIPS). Technical report, Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, pp. 305–313.
  20. Roscoe, W. 2020. Donkey Car: an opensource DIY self driving platform for small scale cars, available at: http://www.donkeycar.com (accessed June 17, 2020).
  21. Schwartz, J. D. and Milam, M. 2008. On-line path planning for an autonomous vehicle in an obstacle filled environment. 2008 47th IEEE Conference on Decision and Control, IEEE, pp. 2806–2813.
  22. Seelye, M., Gupta, G. S., Seelye, J. and Mukhopadhyay, S. C. 2010. Camera-in-hand robotic system for remote monitoring of plant growth in a laboratory. Proceedings of 2010 IEEE I2MTC Conference, Austin, TX, May 4-6, pp. 809–814.
  23. Sen Gupta, G., Mukhopadhyay, S. C. and Finnie, M. 2009. Wi-Fi based control of a robotic arm with remote vision. Proceedings of 2009 IEEE I2MTC Conference, Singapore, May 7, pp. 557–562.
  24. Sen Gupta, G., Mukhopadhyay, S. C., Demidenko, S. and Messom, C. H. 2006. Master-slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing. IEEE Transactions on Instrumentation and Measurement 55(6): 2136–2145.
  25. Srinivasa, S. S., Lancaster, P., Michalove, J., Schmittle, M., Rockett, C. S. M., Smith, J. R., Choudhury, S., Mavrogiannis, C. and Sadeghi, F. 2019. Mushr: A low-cost, open-source robotic racecar for education and research. arXiv preprint arXiv:1908.08031.
  26. Tian, Y. et al. 2018. Deeptest: automated testing of deep-neural-network-driven autonomous cars. Proceedings of the 40th International Conference on Software Engineering, Gothenburg, May, pp. 303–314.
  27. Toupet, O. et al. 2019. Terrain-adaptive wheel speed control on the Curiosity Mars rover: algorithm and flight results. Journal of Field Robotics 37(5): 699–728.
  28. Wu, B. et al. 2017. SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, July, pp. 129–137.
  29. Zhang, Q. and Du, T. 2019. Self-driving scale car trained by deep reinforcement learning. arXiv preprint arXiv:1909.03467.
  30. Zhang, W. and Mahale, T. 2018. End to end video segmentation for driving: lane detection for autonomous car. arXiv 2018, arXiv:1812.05914.
Language: English
Page range: 1 - 17
Submitted on: Jul 26, 2020
Published on: Aug 25, 2020
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Avishkar Seth, Alice James, Subhas C. Mukhopadhyay, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.