Have a personal or library account? Click to login

Dynamical analysis and controllers performance evaluation for single degree-of-freedom system

Open Access
|Aug 2020

References

  1. Ahmed, A. 2018. Fuzzy logic control of classic SDOF spring mass dashpot system. International Journal of Advanced Research in Engineering and Technology, 9(6): 51–58.
  2. Akpakpavi, M. 2017. Modeling and control of a car suspension system using P, PI, PID, GA-PID and auto-tuned PID controller in MATLAB/Simulink. Journal of Multidisciplinary Engineering Science Studies 3(3): 1506–1513.
  3. Alan, H. 2010. Fuzzy system case study, intelligent systems: lectures. London: Universitat de Girona.
  4. Allamraju, K. V. 2016. Dynamic analysis of an automobile suspension system. IPASJ International Journal of Mechanical Engineering 4(7): 15–21.
  5. Al-Samarraie, S. A., Midhat, B. F. and Gorial, I. I. 2016. Nonlinear integral control design for DC motor speed control with unknown and variable external torque. Journal of Engineering and Sustainable Development 20(4): 19–33.
  6. Ang, K. H., Chong, G. and Li, Y. 2005. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13(4): 559–576.
  7. Bahiah, N., Noor, M. and Ahmad, M. R. 2017. Modeling the vibrational dynamics of piezoelectric actuator by system identification technique. 7(3): 1506–1512.
  8. Bhutta, H. A., Mansoor, H. and Tariq, M. 2016. Proceedings of the 3rd International Conference on Engineering & Emerging Technologies (ICEET), Lahore, PK: Superior University, April 7–8.
  9. Caliò, R., Rongala, U., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G. and Oddo, C. 2014. Piezoelectric energy harvesting solutions. Sensors 14(12): 4755–4790.
  10. El-Nasser, A., Ahmed, S., Ali, A. S., Ghazaly, N. M. and Abd El-Jaber, G. T. 2015. PID controller of active suspension system for a quarter car model. International Journal of Advances in Engineering & Technology 8(6): 899–909.
  11. Frankovský, P., Delyová, I. and Hroncová, D. 2011. Modeling of a mechanical system with one degree of freedom of movement in the MATLAB program. pp. 71-73.
  12. Katal, N. and Singh, S. K. 2012. Optimization of PID controller for quarter-car suspension system using genetic algorithm. International Journal of Advance Research in Computer Engineering & Technology 1(7): 30–32.
  13. Katsuhiko, O. 2010. Modern Control Engineering 5th ed., Prentice Hall.
  14. Kundu, S. and Nemade, H. B. 2016. Modeling and simulation of a piezoelectric vibration energy harvester. Procedia Engineering 144: 568–575.
  15. Li, Z. and Yin, Z. 2017. Position tracking control of mass spring damper system with time-varying coefficients. 29th Chinese Control and Decision Conference (CCDC), IEEE, 4994–4998.
  16. Liang, L., Feng, Z. and Chen, Z. 2019. “Seismic control of SDOF systems with nonlinear eddy current dampers”, Applied Sciences, 9(16): 1–18.
  17. Nafea, M., Mohammad Ali, A. R., Baliah, J. and Mohamed Ali, M. S. 2018. Metamodel-based optimization of a PID controller parameters for a coupled-tank system. TELKOMNIKA Telecommunication Computer Electronics and Control 16(4): 1590–1596.
  18. Orhorhoro, E. K., Onogbotsere, M. E. and Ikpe, A. E. 2016. Simulation of a mass spring damper model in phase variable. ELK Asia Pacific Journal of Mechanical Engineering Research 2(2): 1–16.
  19. Samin, R. E., Jie, L. M. and Zawawi, M. A. 2011. PID implementation of heating tank in mini automation plant using programmable logic controller (PLC). International Conference on Electrical, Control and Computer Engineering, pp. 515–519.
  20. Sánchez, M. and Pugnaloni, L. A. 2011. Effective mass overshoot in single degree of freedom mechanical systems with a particle damper. Journal of Sound and Vibration 330(24): 5812–5819.
  21. Sartika, E. M., Sarjono, T. R. and Saputra, D. D. 2019. Prediction of PID control model on PLC. TELKOMNIKA 17(1): 529–536.
  22. Sharma, M. and Singh, S. P. 2014. Fuzzy logic-based vibration control of a single degree of freedom system. 2014 Recent Advances in Engineering and Computational Sciences (RAECS), IEEE, pp. 1–6.
  23. Shen, Y., Fan, M., Li, X., Yang, S. and Xing, H. 2015. Dynamical analysis on single degree-of-freedom semi active control system by using fractional-order derivative. Mathematical Problems in Engineering 2015: 1–14.
  24. Srinivasan, G., Kumar, M. S. and Basha, A. M. J. 2016. Mathematical modeling and PID controller design using transfer function and root locus method for active suspension system. Middle-East Journal of Scientific Research 24(3): 622–627.
  25. Vargas, R. and Bruneau, M. 2004. “Seismic response of single degree of freedom structural fuse systems”, 13th World Conference on Earthquake Engineering, Vancouver, August 1–6.
Language: English
Page range: 1 - 12
Submitted on: Jul 2, 2020
Published on: Aug 12, 2020
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Ivan Isho Gorial, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.