Have a personal or library account? Click to login

A novel algorithm for estimation of Twitter users location using public available information

Open Access
|Jul 2020

References

  1. Abbas, A. K., Bayat, O. and Nuri Ucan, O. 2017. Estimation of Twitter user’s nationality based on friends and follower’s information. Computers & Electrical Engineering, 66: 517–530, doi: 10.1016/j.compeleceng.2017.06.033.
  2. Anber, H., Salah, A. and El-aziz, A. A. 2016. A literature review on Twitter data analysis. International Journal of Computer and Electrical Engineering 8(3): 241–249, doi: 10.17706/ijcee.2016.8.3.241-249.
  3. Atefeh, F. and Khreich, W. 2015. A survey of techniques for event detection in Twitter. Computational Intelligence 31: 132–164, doi: 10.1111/coin.12017.
  4. Bothos, E., Apostolou, D. and Mentzas, G. 2010. Using social media to predict future events with agent-based markets. IEEE Intelligent Systems 25(6): 50–58.
  5. Brown, D. E., Abbasi, A. and Lau, R. Y. K. 2015. Predictive analytics. IEEE Intelligent Systems 30(2): 6–8.
  6. Chang, H. -W., Lee, D., Eltaher, M. and Lee, J. 2012. @ Phillies Tweeting from Philly? Predicting Twitter user locations with spatial word usage. pp. 111-118, doi: 10.1109/ASONAM.2012.29.
  7. Culotta, A., Ravi, N. K. and Cutler, J. 2015. Predicting the demographics of Twitter users from website traffic data. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 72–78.
  8. De Choudhury, M., Gamon, M., Counts, S. and Horvitz, E. 2013. Predicting depression via social media. ICWSM, 13: 1–10.
  9. Gentry, J. 2015. R Based Twitter Client Description Provides an interface to the Twitter web API, available at: http://lists.hexdump.org/listinfo.cgi/twitter-users-hexdump.org.
  10. Golbeck, J., Robles, C. and Turner, K. 2011. Predicting personality with social media. Conference on Human Factors in Computing Systems – Proceedings, 253–262, doi: 10.1145/1979742.1979614.
  11. Hecht, B., Hong, L., Suh, B. and Chi, E. H. 2011. Tweets from Justin Bieber’s heart: the dynamics of the “Location” field in user profiles. CHI ‘11 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, May 7–12, 237–246.
  12. Huang, W., Weber, I. and Vieweg, S. 2014. Inferring nationalities of Twitter users and studying inter-national linking. Proceedings of the 25th ACM Conference on Hypertext and Social Media, 237–242.
  13. Jayanthi, N., Babu, B. V. and Rao, N. S. 2017. Survey on clinical prediction models for diabetes prediction. Journal of Big Data, 4(26), doi: 10.1186/s40537-017-0082-7.
  14. Kong, L., Liu, Z. and Huang, Y. 2014. SPOT: locating social media users based on social network context. Proceedings of the VLDB Endowment 7: 1681–1684.
  15. Lazarus, R., Achrekar, H., Lazarus, R. and Park, W. C. 2011. Predicting flu trends using Twitter data. IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, 702–707, doi: 10.1109/INFCOMW.2011.5928903.
  16. Liu, H. 2013. Some computational challenges in mining social media. 2013 IEEE/ACM International Conference in Advances in Social Networks Analysis and Mining (ASONAM), Niagara Falls, August 25-28, doi: 10.1109/ASONAM.2013.6785672.
  17. Mcgee, J., Caverlee, J. and Cheng, Z. 2013. Location prediction in social media based on tie strength. CIKM ‘13 Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, 459–468.
  18. Package based Twitter client description provides an interface to the Twitter web API. Version 1.1.8, February 20, 2015.
  19. Tsujioka, S., Kondo, A. and Watanabe, K. 2016. Estimation of residence information of Twitter users based on their posted messages: data for tourism development. International Journal of Research in Chemical, Metallurgical and Civil Engineering 3(1): 180–183.
  20. Tufekci, Z. 2014. Big questions for social media big data: representativeness, validity and other methodological pitfalls. ICWSM 14, 505–514.
  21. Tumasjan, A., Sprenger, T. O., Sandner, P. G. and Welpe, I. M. 2010. Predicting elections with Twitter: what 140 characters reveal about political sentiment. Conference: Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM, Washington, DC, May 23-26, 178–185.
  22. Volkova, S. and Yarowsky, D. (2014), “Improving gender prediction of social media users via weighted annotator rationales”, In NIPS 2014 Workshop on Personalization, San Diego, CA, December 8–13.
  23. Zhang, X., Fuehres, H. and Gloor, P. A. 2011. “Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”, Procedia – Social and Behavioral Sciences 26: 55–62.
Language: English
Page range: 1 - 10
Submitted on: Dec 10, 2019
Published on: Jul 9, 2020
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Yasser Almadany, Khalid Mohammed Saffer, Ahmed K. Jameil, Saad Albawi, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.