Have a personal or library account? Click to login

A novel approach to label road defects in video data: semi-automated video analysis

Open Access
|Apr 2020

References

  1. Angulo, A., Vega-Fernández, J. A., Aguilar-Lobo, L. M., Natraj, S. and Ochoa-Ruiz, G. 2019. Road damage detection acquisition system based on deep neural networks for physical asset management. Mexican International Conference on Artificial Intelligence, Springer, Cham, pp. 3–14, available at: https://doi.org/10.1007/978-3-030-33749-0_1
  2. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S. and Balakrishnan, H. 2008. The pothole patrol: using a mobile sensor network for road surface monitoring. Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Association for Computing Machinery, New York City, NY, 29–39.
  3. Li, Q., Chen, X. and Xu, W. 2013. Noise reduction of accelerometer signal with singular value decomposition and Savitzky-Golay filter. Journal of Information & Computational Science 10(15): 4783–4793.
  4. Lin, L. and Liu, Y. 2010. Pothole detection based on SVM in the pavement distress image, 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, pp. 544–547.
  5. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. 2018. Road damage detection using deep neural networks with smartphone images, Computer-Aided Civil and Infrastructure Engineering 33(12): 1127–1141, available at: https://doi.org/10.1111/mice.12387
  6. Masino, J., Thumm, J., Frey, M. and Gauterin, F. 2017. Learning from the crowd: road infrastructure monitoring system. Journal of Traffic and Transportation Engineering 4(5): 451–463, available at: https://doi.org/10.1016/j.jtte.2017.06.003
  7. Radopoulou, S. C. and Brilakis, I. 2016. Automated detection of multiple pavement defects. Journal of Computing in Civil Engineering 31(22): 04016057, available at: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000623
  8. Ward, C. and Iagnemma, K. 2009. Speed-independent vibration-based terrain classification for passenger vehicles. Vehicle System Dynamics 47(9): 1095–1113, available at: 10.1080/00423110802450193
  9. Wu, L., Mokhtari, S., Nazef, A., Nam, B. and Yun, H.-B. 2014. Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment. Journal of Computing in Civil Engineering 30(1): 04014118.
  10. Xu, G., Ma, J., Liu, F. and Niu, X. 2008. Automatic recognition of pavement surface crack based on BP neural network. International Conference on Computer and Electrical Engineering, IEEE, pp. 19–22.
  11. Zhou, J., Huang, P. S. and Chiang, F.-P. 2006. Wavelet-based pavement distress detection and evaluation. Optical Engineering 45(2): 027007, available at: https://doi.org/10.1117/1.2172917
  12. Software:
  13. Thumm, J. and Masino, J. 2019. Semi-Automatic Video Analysis, v1.0, Python, https://zenodo.org/record/3384989
  14. Lin, T. 2020. LabelImg, v1.8.3, Python, https://github.com/tzutalin/labelImg
Language: English
Page range: 1 - 9
Submitted on: Dec 5, 2019
Published on: Apr 30, 2020
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Jakob Thumm, Johannes Masino, Martin Knoche, Frank Gauterin, Markus Reischl, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.