Angulo, A., Vega-Fernández, J. A., Aguilar-Lobo, L. M., Natraj, S. and Ochoa-Ruiz, G. 2019. Road damage detection acquisition system based on deep neural networks for physical asset management. Mexican International Conference on Artificial Intelligence, Springer, Cham, pp. 3–14, available at: https://doi.org/10.1007/978-3-030-33749-0_1
Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S. and Balakrishnan, H. 2008. The pothole patrol: using a mobile sensor network for road surface monitoring. Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Association for Computing Machinery, New York City, NY, 29–39.
Li, Q., Chen, X. and Xu, W. 2013. Noise reduction of accelerometer signal with singular value decomposition and Savitzky-Golay filter. Journal of Information & Computational Science 10(15): 4783–4793.
Lin, L. and Liu, Y. 2010. Pothole detection based on SVM in the pavement distress image, 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, pp. 544–547.
Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. 2018. Road damage detection using deep neural networks with smartphone images, Computer-Aided Civil and Infrastructure Engineering 33(12): 1127–1141, available at: https://doi.org/10.1111/mice.12387
Masino, J., Thumm, J., Frey, M. and Gauterin, F. 2017. Learning from the crowd: road infrastructure monitoring system. Journal of Traffic and Transportation Engineering 4(5): 451–463, available at: https://doi.org/10.1016/j.jtte.2017.06.003
Radopoulou, S. C. and Brilakis, I. 2016. Automated detection of multiple pavement defects. Journal of Computing in Civil Engineering 31(22): 04016057, available at: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000623
Ward, C. and Iagnemma, K. 2009. Speed-independent vibration-based terrain classification for passenger vehicles. Vehicle System Dynamics 47(9): 1095–1113, available at: 10.1080/00423110802450193
Wu, L., Mokhtari, S., Nazef, A., Nam, B. and Yun, H.-B. 2014. Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment. Journal of Computing in Civil Engineering 30(1): 04014118.
Xu, G., Ma, J., Liu, F. and Niu, X. 2008. Automatic recognition of pavement surface crack based on BP neural network. International Conference on Computer and Electrical Engineering, IEEE, pp. 19–22.
Zhou, J., Huang, P. S. and Chiang, F.-P. 2006. Wavelet-based pavement distress detection and evaluation. Optical Engineering 45(2): 027007, available at: https://doi.org/10.1117/1.2172917