Abhinav-Vishwa, M. K., Lal, S. D., and Vardwaj, P.. 2011. Classification of arrhythmic ECG data using machine learning techniques. International Journal of Interactive Multimedia and Artificial Intelligence 1 4: 68–71.
Alfarhan, K. A., Mashor, M. Y., Saad, A. M., AbdulAzeez, H., and Al-Qaisee, M.. 2017. Effects of the window size and feature extraction approach for arrhythmia classification. Journal of Biomimetics, Biomaterials and Biomedical Engineering 30: 1–11.
Benali, R., Dib, N., and Bereksi, F. R.. 2010. Cardiac arrhythmia diagnosis using a neuro-fuzzy approach. Journal of Mechanics in Medicine and Biology 10 3: 417–429.
Berkaya, S. K., Uysal, A. K., Gunal, E. S., Ergin, S., Gunal, S., and Gulmezoglu. 2018. A survey on ECG analysis. Biomedical Signal Processing and Control 43: 216–235.
Brans, J. P., and Mareschal, B.. 1994. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decision Support System 12 4-5: 297–310.
Celin, S., and Vasanth, K.. 2017. Survey on the methods for detecting arrhythmias using heart rate signals. Journal of Pharmaceutical Sciences and Research 9 p. 183.
Che Soh, A., Chow, K. K., Mohammad Yusuf, U. K., Ishak, A. J., Hassan, M. K., and Khamis, S.. 2014. Development of neural network-based electronic nose for herbs recognition. International Journal on Smart Sensing & Intelligent Systems 7 2: 584–609.
Dalvi, R. D. F., Zago, G. T., and Andreao, R. V.. 2016. Heartbeat classification system based on neural networks and dimensionality reduction. Research on Biomedical Engineering 32 4: 318–326.
De Chazel, P., O’Dwyer, M., and Reilly, R. B.. 2004. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering 51 7: 1196–1206.
Erkaymaz, O., Ozer, M., and Perc, M.. 2017. Performance of small-world feedforward neural networks for the diagnosis of diabetes. Applied Mathematics and Computation 311: 22–28.
Haihua, X., Xianchuan, Y., Dan, H., and Sha, D.. 2015. Sensitivity analysis of hierarchical hybrid fuzzy-neural network. International Journal on Smart Sensing & Intelligent Systems 8 3: 1837–54.
Isa, S. M., Suryana, M. E., Akbar, M. A., Noviyanto, A., Jatmiko, W., and Arymurthy, A. M.. 2013. Performance analysis of ECG signal compression using SPIHT. International Journal on Smart Sensing & Intelligent Systems 6 5.
Jain, A., Sharma, V., and Sharma, V.. 2017. Big data mining using supervised machine learning approaches for Hadoop with Weka distribution. International Journal of Computational Intelligence Research 13 8: 2095–2111.
Kelwade, J. P., and Salankar, S. S.. 2015. Prediction of cardiac arrhythmia using artificial neural network. International Journal of Computer Applications 115 20: 30–35.
Khan, R. Z., and Jabbar, H.. 2009. Training algorithms for supervised machine learning: comparative study. International Journal of Management & Information Technology 4 3: 354–360.
Kohli, N., Verma, N. K., and Roy, A.. 2010. SVM based methods for arrhythmia classification in ECG. Proceeding of the International Conference on Computer and Communication Technology (ICCCT), India.
Kotsiantis, S. B., Zaharakis, I., and Pintelas, P.. 2007. Supervised machine learning: a review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering 160: 3–24.
Lassoued, H., and Ketata, R.. 2017. Artificial neural network classifier for heartbeat arrhythmia detection. Proceeding of the International Conference on Automatic and Signal Processing (ATS), Engineering and Technology-PET, March 22-24, Sousse.
Lassoued, H., and Ketata, R.. 2018. ECG multi-class classification using neural network as machine learning model. Proceeding of the International Conference on Advanced Systems and Electric Technologies (IC_ASET), IEEE, March 19-22.
Mao, K. Z., Tan, K. C., and Ser, W.. 2000. Probabilistic neural-network structure determination for pattern classification. IEEE Transactions on Neural Networks 11 4: 1009–1016.
Martis, R. J., and Chakraborty, C. H.. 2011. Arrhythmia disease diagnosis using neural network, SVM, and genetic algorithm-optimized k-means clustering. Journal of Mechanics in Medicine and Biology 11 4: 897–915.
Matul Imah, E., Jatmiko, W., and Basaruddin, T.. 2013. Electrocardiogram for biometrics by using Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ): integrating feature extraction and classification. International Journal on Smart Sensing & Intelligent Systems 6 5: 1891–1917.
Ozbay, Y., Ceylan, R., and Karlik, K.. 2006. A Fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine 36 4: 376–388.
Ponomariov, V., Chirila, L., Apipie, F. M., Abate, R., Rusu, M., Wu, Z., Liehn, E. A., and Bucur, I.. 2017. Artificial intelligence versus doctors’ intelligence: a glance on machine learning benefaction in electrocardiography. Discoveries 5: 1–9.
Rai, H. M., Anurag, T., and Shailja, S.. 2013. ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier. Measurement 46 9: 3238–3246.
Rather, A. M., Agarwal, A., and Sastry, V. N.. 2015. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications 42: 3243–3241.
Savalia, S., Eder, A., and Vahid, E.. 2017. Classification of cardiovascular disease using feature extraction and artificial neural networks. Journal of Biosciences and Medicines 5: 64–79.
Savic, M., Kurbalija, V., Ivanovic, M., and Bosnic, Z.. 2017. A feature selection method based on feature correlation networks. Proceeding of the International Conference on Model and Data Engineering, Springer, Barcelona.
Seshagiri, S., and Khalil, H. K.. 2000. Output feedback control of nonlinear systems using RBF neural networks. IEEE Transactions on Neural Networks 11 1: 69–79.
Silva, I., and Moody, G. B.. 2014. An open-source toolbox for analysing and processing Physionet databases in Matlab and octave. Journal of open research software 2 1.
Sonawane, J. S., Patil, D. R., and Thakare, V. S.. 2013. Survey on decision support system for heart disease. International Journal of Advancements in Technology 4 1: 89–96.
Tomar, M. S., Bandil, M. M. K., and Singh, M. D.. 2013. Multi resolution analysis of ECG for arrhythmia using soft-computing Techniques. Methodology 3 5: 1663–1668.
Yadav, A.R., Anand, R. S., and Dewal, A. M.. 2014. Analysis and classification of hardwood species based on Coiflet DWT feature extraction and WEKA workbench. Proceeding of the International Conference on Signal Processing and Integrated Networks (SPIN), Noida India.
Zhao, N., and Li, Z.. 2017. Viscosity prediction of different ethylene glycol/water based nanofluids using a RBF neural network. Applied Science 7 4, p. 409.