Have a personal or library account? Click to login
By:
Open Access
|Jun 2016

References

  1. Li, Y., Y. Wu, and Z. Huang, “An incremental kriging method for sequential optimal experimental design”, CMES - Computer Modeling in Engineering and Sciences, Vol.97, No.4, 2014, pp. 323-357.
  2. Myers, R.H. and D.C. Montgomery, “Response Surface Methodology-Process and Product Optimization Using Designed Experiments”, 2009: WILEY.
  3. Kleijnen, J.P.C., “Kriging metamodeling in simulation: A review”, European Journal of Operational Research, Vol.192, No.3, 2009, pp. 707-716.10.1016/j.ejor.2007.10.013
  4. Jones, D.R., M. Schonlau, and W.J. Welch, “Efficient global optimization of expensive black-box functions”, Journal of Global optimization, Vol.13, No.4, 1998, pp. 455-492.10.1023/A:1008306431147
  5. Kanazaki, M., H. Takagi, and Y. Makino, “Mixed-fidelity Efficient Global Optimization Applied to Design of Supersonic Wing”, Procedia Engineering, Vol.67, No.0, 2013, pp. 85-99.10.1016/j.proeng.2013.12.008
  6. Horowitz, B., et al., “A concurrent efficient global optimization algorithm applied to polymer injection strategies”, Journal of Petroleum Science and Engineering, Vol.71, No.3, 2010, pp. 195-204.10.1016/j.petrol.2010.02.002
  7. Ur Rehman, S., M. Langelaar and F. van Keulen, “Efficient Kriging-based robust optimization of unconstrained problems”, Journal of Computational Science.
  8. Parr, J.M., et al., “Infill sampling criteria for surrogate-based optimization with constraint handling”, Engineering Optimization, Vol.44, No.10, 2012, pp. 1147-1166.10.1080/0305215X.2011.637556
  9. Sakata, S., F. Ashida, and M. Zako, “Structural optimization using Kriging approximation. Computer Methods in Applied Mechanics and Engineering”, Vol.192, No.7, 2003, pp. 923-939.10.1016/S0045-7825(02)00617-5
  10. Jones, D.R., “A taxonomy of global optimization methods based on response surfaces”, Journal of Global Optimization, Vol.21, No.4, 2001, pp. 345-383.10.1023/A:1012771025575
  11. Seulgi, Y., K. Hyung-Il, and C. Seongim, “Efficient Global Optimization Using a Multi-objective Approach Infill Sampling Criteria”, in 52nd AIAA Aerospace Sciences Meeting, 13-17 Jan. 2014. 2013. Reston, VA, USA: American Institute of Aeronautics and Astronautics, Inc.
  12. Huang, D., et al., “Global optimization of stochastic black-box systems via sequential kriging meta-models”, Journal of Global Optimization, Vol.34, No.3, 2006, pp. 441-466.10.1007/s10898-005-2454-3
  13. Chaudhuri, A., R.T. Haftka, and F.A.C. Viana,”Efficient global optimization with adaptive target for probability of targeted improvement”, in 53rd AIAA/ ASME/ ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference 2012, April 23, 2012 - April 26, 2012. 2012. Honolulu, HI, United states: American Institute of Aeronautics and Astronautics Inc.10.2514/6.2012-1681
  14. Schonlau, M., W.J. Welch, and D.R. Jones, Global versus local search in constrained optimization of computer models, in New developments and applications in experimental design, N. Flournoy, W.F. Rosenberger, and W.K. Wong, Editors. 1998, Institute of Mathematical Statistics: Hayward, CA. pp. 11-25.
  15. Sasena, M.J., P. Papalambros, and P. Goovaerts, Exploration of metamodeling sampling criteria for constrained global optimization. Engineering Optimization, Vol.34, No.3, 2002, pp. 263-278.10.1080/03052150211751
  16. Ponweiser, W., et al., Clustered Multiple Generalized Expected Improvement: A Novel Infill Sampling Criterion for Surrogate Models. 2008 Ieee Congress on Evolutionary Computation, Vols 1-8. 2008. pp. 3515-3522.
  17. Jia, G. and A.A. Taflanidis, Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment. Computer Methods in Applied Mechanics and Engineering, Vol.261-262, 2013, PP.24-38.10.1016/j.cma.2013.03.012
  18. Lophaven, S.N., H.B. Nielsen, and J. Søndergaard, Aspects of the matlab toolbox DACE. 2002, Informatics and Mathematical Modelling, Technical University of Denmark, DTU.
  19. HollandJohn, H., Adaptation in natural and artificail systerms. Ann Arbor: University of Michigan Press, 1975.
  20. Gu, J., G.Y. Li, and Z. Dong, “Hybrid and adaptive meta-model-based global optimization”, Engineering Optimization, Vol.44, No.1, 2012, pp. 87-104.10.1080/0305215X.2011.564768
  21. MAO, H.-y., et al., “Design and calculation for oil chambers of cycloidal rotor pump”, Journal of Shandong University (Engineering Science), Vol.32, No.2, 2002. pp. 175-176.
Language: English
Page range: 927 - 952
Submitted on: Jan 10, 2016
Accepted on: Mar 31, 2016
Published on: Jun 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Yaohui Li, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.