Have a personal or library account? Click to login
By:
Open Access
|Jun 2016

Abstract

Efficient Global Optimization (EGO) algorithm with Kriging model is stable and effective for an expensive black-box function. However, How to get a more global optimal point on the basis of surrogates has been concerned in simulation-based design optimization. In order to better solve a black-box unconstrained optimization problem, this paper introduces a new EGO method named improved generalized EGO (IGEGO), in which two targets will be achieved: using Kriging surrogate model and guiding the optimal searching direction into more promising regions. Kriging modeling which can fast construct an approximation model is the premise ofperforming optimization. Next, a new infill sampling criterion (ISC) called improved generalized expected improvement which round off Euclidean norm on variation of the optimal solutions ofparameter θ to replace parameter g can effectively balance global and local search in IGEGO method. Twelve numerical tests and an engineering example are given to illustrate the reliability, applicability and effectiveness of the present method

Language: English
Page range: 927 - 952
Submitted on: Jan 10, 2016
Accepted on: Mar 31, 2016
Published on: Jun 1, 2016
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Yaohui Li, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.