Have a personal or library account? Click to login
Auto-Adaptive Control of a One-Joint Arm Direct Driven by Antagonistic Shape Memory Alloy Cover

Auto-Adaptive Control of a One-Joint Arm Direct Driven by Antagonistic Shape Memory Alloy

Open Access
|Jun 2013

References

  1. K.F. Beyeler, A. Neild, S. Oberti, D. J. Bell, Y. Sun, J. Dual and B. J. Nelson, Monolithically Fabricated Microgripper with Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field, J. Microelectromech. Syst., Vol 16 No 1, pp. 7–15, 2007.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/JMEMS.2006.885853" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JMEMS.2006.885853</a></dgdoi:pub-id>
  2. T. C. Duc, G. K. Lau, J. F. Creemer and P. M. Sarro, ElectrothermalMicrogripper with Large Jaw Displacement and Integrated Force Sensors,J. Microelectromech. Syst., Vol 17 No6, pp. 1546–1555, 2008.
  3. S. Konishi, F. Kawai and P. Cusin, Thin Flexible End-effector using Pneumatic Balloon Actuator, Sens. Actuators A, 89, pp. 28-35, 2001.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0924-4247(00)00533-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0924-4247(00)00533-1</a></dgdoi:pub-id>
  4. R. Lumia and M. Shahinpoor, IPMC Microgripper Research and Development, J. Phys.: Conf. Ser., 127, 012002, 2008.
  5. R. Pérez, J. Agnus, C. Clévy, A. Hubert, and N. Chaillet, Modeling, Fabrication, and Validation of a High-Performance 2-DoF Piezoactuator for Micromanipulation, IEEE/ASME Trans. Mechatron., 10(2), pp. 161-171, 2005.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TMECH.2005.844712" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TMECH.2005.844712</a></dgdoi:pub-id>
  6. D.H. Kim, B. Kimand H. Kang, Development of a Piezoelectric Polymer-based Sensorized Microgripper for Microassembly and Micromanipulation, Microsystem Technologies, 10, pp. 275–280, 2004.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00542-003-0330-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00542-003-0330-y</a></dgdoi:pub-id>
  7. Z. W. Zhong and C. K. Yeong, Development of a Gripper Using SMA Wire, Sens. Actuators A, 126(2), pp. 375–381, 2006.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.sna.2005.10.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.sna.2005.10.017</a></dgdoi:pub-id>
  8. J. H. Kyung, B. G. Ko, Y. H. Ha, and G. J. Chung, Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges, Sens. Actuators A, 141, pp. 144–150, 2008 .<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.sna.2007.07.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.sna.2007.07.013</a></dgdoi:pub-id>
  9. J. M. Stevens and G. D. Buckner, Actuation and control strategies for miniature robotic surgical systems, ASME J. Dyn. Syst., Meas. Control, Vol. 127, pp. 537–549. 2010.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1115/1.2098892" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.2098892</a></dgdoi:pub-id>
  10. F. Morra, R. Molfino and F. Cepolina, Miniature gripping device, Proc. Int. Conf. Intell. Manipulation Grasping, pp. 363–368. 2004.
  11. H. Fischer, B. Vogel and A.Welle, Application of shape memory alloy in medical instruments, Minimally Invasive Therapy Allied Technol., Vol. 13, No. 4, pp. 248–253, 2004.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/13645700410018046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/13645700410018046</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">16754133</dgpm:pub-id>
  12. M. Hashimoto, M. Takeda, H. Sagawa, I. Chiba and K. Sat, Shape memory alloy and robotic actuators, J. Robot. Syst., Vol. 2, pp. 325, 1985.
  13. K. Dhanalakshmi, Aditya Avinash, M. Umapathy, M. Marimuthu, Experimental study on vibration control of shape memory alloy actuated flexible beam, International Journal on Smart Sensing and Intelligent Systems, Vol 3,No 2, pp. 156-175, 2010.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.21307/ijssis-2017-387" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21307/ijssis-2017-387</a></dgdoi:pub-id>
  14. Nakshatharan S, Ruth D J S, Dhanalakshmi K, Design based active vibration control of a flexible structure using shape memory alloy wire actuators, IEEE International Conference on Sensing Technology, pp. 476-480, Dec 2012.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICSensT.2012.6461725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICSensT.2012.6461725</a></dgdoi:pub-id>
  15. Ruth D J S, Nakshatharan S, Dhanalakshmi K, Angular trajectory tracking using antagonistic shape memory alloy actuators, IEEE International Conference on Sensing Technology, pp.748-753, Dec 2012.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICSensT.2012.6461778" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICSensT.2012.6461778</a></dgdoi:pub-id>
  16. M. Moallem and J. Lu, Application of shape memory alloy actuator for flexure control: Theory and experiments, IEEE Trans. Mechatronics, 2005, Vol. 10, No. 5, pp. 495–501.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TMECH.2005.856220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TMECH.2005.856220</a></dgdoi:pub-id>
  17. N.Ma and G Song, Control of shape memory alloy actuator using pulse width modulation, Smart Mater. Struct., Vol.12, pp. 712–719. 2003.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1088/0964-1726/12/5/007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0964-1726/12/5/007</a></dgdoi:pub-id>
  18. Kevin M. Lynch, Matthew T. Mason, Dynamic manipulation with a one joint robot, IEEE International Conference on Robotics and Automation, Vol 1,pp 359-366,1997.
  19. S. Majima, K. Kodamaand T. Hasegawa, Modelling of shape memory alloy actuator and tracking control system with the model, IEEE Transactions on Control System Technology, Vol 9, pp.54, 2001.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/87.896745" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/87.896745</a></dgdoi:pub-id>
  20. K. Kwan Ahn and B. Kha Nguyen, Position Control of Shape Memory Alloy Actuators using Self-Tuning Fuzzy PID Controller, J. Control Automation, Vol. 4, pp. 756-762, 2006.
  21. V. A. Tabsizi and M. Moallem, Nonlinear Position Control of Antagonistic Shape Memory Alloy Actuators, Proceedings of American Control Conference, pp 88-93, 2007.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ACC.2007.4282721" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ACC.2007.4282721</a></dgdoi:pub-id>
  22. H. Li, C. Mao and J. Ou, Strain self-sensing property and strain rate dependent constitutive model of austenitic shape memory alloy: Experiment and Theory, Journal of Materials in Civil Engineering,Vol.17, No 6,pp 676-685,2005.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(676)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)0899-1561(2005)17:6(676)</a></dgdoi:pub-id>
  23. Zulfatman and M. F. Rahmat, Application of self-tuning Fuzzy PID Controller on Industrial Hydraulic Actuator using System Identification Approach, International Journal on Smart Sensing and Intelligent Systems, Vol. 2, No. 2,pp 246-261,June 2009.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.21307/ijssis-2017-349" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21307/ijssis-2017-349</a></dgdoi:pub-id>
Language: English
Page range: 833 - 849
Submitted on: Apr 12, 2013
Accepted on: May 2, 2013
Published on: Jun 5, 2013
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2013 D Josephine Selvarani Ruth, S Sunjai Nakshatharan, K Dhanalakshmi, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.