Have a personal or library account? Click to login
Assessment of a Non-Optical Water Quality Property Using Space-based Imagery in Egyptian Coastal Lake Cover

Assessment of a Non-Optical Water Quality Property Using Space-based Imagery in Egyptian Coastal Lake

Open Access
|Nov 2019

References

  1. Abayazid, H., 2015. Assessment of temporal and spatial alteration in coastal lakes-Egypt. In: Proceedings of the eighteenth International Water Technology Conference (IWTC 2015), Sharm El Sheikh, 12–14 Mar 2015, 598–608.
  2. Abayazid, H., El-Gamal, A., 2017. Employing remote sensing for water clarity monitoring in the Nile Delta coast. International Water Technology Journal IWTJ 7(4), 265-277.
  3. Akbar, T., Hassan, Q., Achari, G., 2010. A remote sensing based framework for predicting water quality of different source waters. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34, Part XXX.
  4. Bilge, F., Yazici, B., Dogeroglu, T., Ayday, C., 2003. Statistical evaluation of remotely sensed data for water quality monitoring. International Journal of Remote Sensing 24(24), 5317–5326.
  5. Brezonik, P., Menken, K.D., Bauer, M., 2005. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 21, 373–382.
  6. Brivio, P., Giardino, C., Zilioli, E., 2001. Determination of chlorophyll concentration changes in Lake Garda using an image-based reductive transfer code for landsat TM images. International Journal of Remote Sensing 22(2), 487-502.
  7. Chapra, S.C., 1997. Surface water quality modeling. McGraw-Hill Co. Inc.
  8. Dona, C., Sánchez, J.M., Caselles, V., Domínguez, J.A., Camacho, A., 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(5), 1632-1641.
  9. Dorji, P., Fearns, P., 2016. A quantitative comparison of Total Suspended Sediment algorithms: A case study of the last decade for MODIS and Landsat-based sensors. Remote Sens. 8, 810; doi:10.3390/rs8100810.
  10. Environmental Protection Agency (EPA), 1999. Guidance manual for compliance with the interim enhanced surface water treatment rule. United States, Environmental Protection Agency, Office of Water (4607) publishing, EPA-815- R-99-010, 201p.
  11. Ganoe, R., DeYoung, R., 2013. Remote sensing of Dissolved Oxygen and Nitrogen in water using raman spectroscopy. the NASA scientific and technical information (STI), NASA Center for AeroSpace Information, NASA/TM–2013-218142.
  12. Gholizadeh, M.H., Melesse, A.M., Reddi, L., 2016. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 16 (8), 1298; doi:10.3390/s16081298.
  13. Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A., Morabito, G., 2014. Optical remote sensing of lakes: an overview on Lake Maggiore. J. Limnol. 73(s1), 201-214; DOI: 10.4081/jlimnol.2014.817.
  14. He, W., Chen, S., Liu, X., Chen, J., 2008. Water quality monitoring in slightly-polluted inland water body through remote sensing - A case study in Guanting Reservoir, Beijing, China. Front. Environ. Sci. Engin. China 2(2), 163–171; DOI 10.1007/s11783-008-0027-7.
  15. Hossen, H., Negm, A., 2017. Sustainability of water bodies of Edku Lake, Northwest of Nile Delta, Egypt: RS/GIS Approach. Procedia Engineering 181, 404 – 411.
  16. Kloiber, S.M., Brezonik, P.L., Bauer, M.E, 2002. Application of Landsat imagery to regional-scale assessments of lake clarity. Water Res. (36, 4330–4340.
  17. Li, S., Wu, Q., Wang, X., 2002. Correlations between reflectance spectra and contents of Chlorophyll-a in Chaohu Lake. Journal of Lake Sciences 9 (14), 228-234.
  18. Okbah, M., Abd El-Halim, A., Abu El-Regal, M., Nassar, M., 2017. Water quality assessment of Lake Edku using physicochemical and nutrients salts, Egypt. Chemistry reseach journal 2 (4), 104-117.
  19. Siam, E., Ghobrial, M., 2000. Pollution influence on bacterial abundance and Chlorophyll-a concentration: case study at Idku Lagoon, Egypt. Scientia Marina SCI. MAR. 64 (1), 1-8.
  20. Sravanthi, N., Ramana, I.V., YunusAli, P., Ashraf, M., Ali, M.M., Narayana, A.C., 2013. An algorithm for estimating Suspended Sediment concentrations in the coastal waters of India using remotely sensed reflectance and its application to coastal environments. Int. J. Environ. Res., 7(4), 841-850.
  21. Swain, R., Sahoo, B., 2017. Improving river water quality monitoring using satellite data products and a genetic algorithm processing approach. Sustainability of Water Quality and Ecology (9–10), 88–114.
  22. Thiemann, S., Kaufmann, H., 2000. Determination of Chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake district - Germany. Remote Sensing of Environment 73, 227-235.
  23. United Nations Educational, Scientific and Cultural Organization (UNESCO), 2005. water resources systems planning and management - ISBN 92-3-103998-9 – © UNESCO, 390 – 393.
  24. United States Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center, 2015. LANDSAT 8 (L8) data users’ handbook, Version 1.0, LSDS-1574.
  25. Zhang, Y.Z., 2002. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sensing of Environment 81(2), 327–336.
Language: English
Page range: 53 - 64
Published on: Nov 11, 2019
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Hala O. Abayazid, Ahmed El-Adawy, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution 4.0 License.