Have a personal or library account? Click to login
Personal Network Composition and Cognitive Reflection Predict Susceptibility to Different Types of Misinformation Cover

Personal Network Composition and Cognitive Reflection Predict Susceptibility to Different Types of Misinformation

Open Access
|Jun 2024

References

  1. Allen, J., Howland, B., Mobius, M., Rothschild, D., & Watts, D. J. (2020). Evaluating the fake news problem at the scale of the information ecosystem. Science Advances, 6(14), eaay3539.
  2. Amira, K., Wright, J. C., & Goya-Tocchetto, D. (2021). In-group love versus out-group hate: Which is more important to partisans and when? Political Behavior, 43(2), 473–494.
  3. Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. B. F., Lee, J., Mann, M., Merhout, F., & Volfovsky, A. (2018). Exposure to opposing views on social media can increase political polarization. Proceedings of the National Academy of Sciences of the United States of America, 115(37), 9216–9221.
  4. Baron, H., Blair, R., Choi, D. D., Gamboa, L., Gottlieb, J., Robinson, A. L., Rosenzweig, S., Turnbull, M., & West, E. A. (2021). Can Americans depolarize? Assessing the effects of reciprocal group reflection on partisan polarization. https://doi.org/10.31219/osf.io/3x7z8
  5. Batailler, C., Brannon, S. M., Teas, P. E., & Gawronski, B. (2022). A signal detection approach to understanding the identification of fake news. Perspectives on Psychological Science, 17(1), 78–98.
  6. Bradshaw, S., Howard, P. N., Kollanyi, B., & Neudert, L. M. (2020). Sourcing and automation of political news and information over social media in the United States, 2016–2018. Political Communication, 37(2), 173–193.
  7. Brashears, M. E. (2014). Trivial topics and rich ties: The relationship between discussion topic, alter role, and resource availability using the important matters name generator. Sociological Science, 1(27), 493–511.
  8. Brenner, P. S., Serpe, R. T., & Stryker, S. (2014). The causal ordering of prominence and salience in identity theory: An empirical examination. Social Psychology Quarterly, 77(3), 231–252.
  9. Burke, P. J., & Stets, J. E. (2009). Identity theory. Oxford University Press.
  10. Chaiken, S., & Maheswaran, D. (1994). Heuristic processing can bias systematic processing: Effects of source credibility, argument ambiguity, and task importance on attitude judgment. Journal of Personality and Social Psychology, 66(3), 460–473.
  11. Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences of the United States of America, 118(9), e2023301118.
  12. CNN. (2021). Partisanship Survey Report. Retrieved from http://cdn.cnn.com/cnn/2021/images/09/12/rel5c.-.partisanship.pdf
  13. Ditto, P. H., Liu, B. S., Clark, C. J., Wojcik, S. P., Chen, E. E., Grady, R. H., Celniker, J. B., & Zinger, J. F. (2019). At least bias is bipartisan: A meta-analytic comparison of partisan bias in liberals and conservatives. Perspectives on Psychological Science, 14(2), 273–291.
  14. Ervin, L. H., & Stryker, S. (2001). Theorizing the relationship between self-esteem and identity. In Extending self-esteem theory and research: Sociological and psychological currents (pp. 29–55).
  15. Evans, J. St. B. T., & Over, D. E. (1996). Rationality and reasoning. Psychology Press.
  16. Facciani, M. (2020). How self-sentiments and personal networks impact political polarization [Doctoral dissertation, University of South Carolina].
  17. Facciani, M., & Brashears, M. E. (2019). Sacred alters: The effects of ego network structure on religious and political beliefs. Socius, 5. https://doi.org/10.1177/23780231198738
  18. Facciani, M., & McKay, T. (2022). Network loss following the 2016 presidential election among LGBTQ+ adults. Applied Network Science, 7(1), 1–21.
  19. Facciani, M., Lazić, A., Viggiano, G., & McKay, T. (2023). Political network composition predicts vaccination attitudes. Social Science & Medicine, 328, 116004.
  20. Faris, R., Roberts, H., Etling, B., Bourassa, N., Zuckerman, E., & Benkler, Y. (2017). Partisanship, propaganda, and disinformation: Online media and the 2016 US presidential election (p. 6). Berkman Klein Center Research Publication.
  21. Finkel, E. J., Bail, C. A., Cikara, M., Ditto, P. H., Iyengar, S., Klar, S., Mason, L., McGrath, M. C., Nyhan, B., Rand, D. G., Skitka, L. J., Tucker, J. A., Bavel, J. J. V., Wang, C. S., & Druckman, J. N. (2020). Political sectarianism in America. Science, 370(6516), 533–536.
  22. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25–42.
  23. Freeman, L. C. (1992). The sociological concept of group: An empirical test of two models. The American Journal of Sociology, 98(1), 152–166.
  24. Freeman, L. C., Romney, A. K., & Freeman, S. C. (1987). Cognitive structure and informant accuracy. American Anthropologist, 89(2), 310–325.
  25. Frenkel, S., Alba, D., & Zhong, R. (2020). Surge of virus misinformation stumps Facebook and Twitter. The New York Times. Retrieved from http://www/nytimes.com/2020/03/08/technology/coronavirus-misinformation-social-media.html
  26. Garrett, R. K., & Bond, R. M. (2021). Conservatives’ susceptibility to political misperceptions. Science Advances, 7(23), eabf1234.
  27. Gawronski, B. (2021). Partisan bias in the identification of fake news. Trends in Cognitive Sciences, 25(9), 723–724.
  28. Graham, M. H., & Svolik, M. W. (2020). Democracy in America? Partisanship, polarization, and the robustness of support for democracy in the United States. American Political Science Review, 114(2), 392–409.
  29. Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., & Lazer, D. (2019). Fake news on Twitter during the 2016 US presidential election. Science, 363(6425), 374–378.
  30. Heise, D. (2007). Expressive order: Confirming sentiments in social actions. Springer Science & Business Media.
  31. Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N., & Westwood, S. J. (2019). The origins and consequences of affective polarization in the United States. Annual Review of Political Science, 22(1), 129–146.
  32. Jacobson, L. (2018). Did Nancy Pelosi vow to raise taxes if democrats take the U.S. House? Politifact. Retrieved from https://www.politifact.com/factchecks/2018/apr/09/blog-posting/did-nancy-pelosi-vow-raise-taxes-if-democrats-take/
  33. Kahan, D. M., Peters, E., Dawson, E. C., & Slovic, P. (2017). Motivated numeracy and enlightened self-government. Behavioural Public Policy, 1(1), 54–86.
  34. Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
  35. Keating, J., Van Boven, L., & Judd, C. M. (2016). Partisan underestimation of the polarizing influence of group discussion. Journal of Experimental Social Psychology, 65, 52–58.
  36. Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094–1096.
  37. Lazer, D., Rubineau, B., Chetkovich, C., Katz, N., & Neblo, M. (2010). The coevolution of networks and political attitudes. Political Communication, 27(3), 248–274.
  38. Liberali, J. M., Reyna, V. F., Furlan, S., Stein, L. M., & Pardo, S. T. (2012). Individual differences in numeracy and cognitive reflection, with implications for biases and fallacies in probability judgment. Journal of Behavioral Decision Making, 25(4), 361–381. https://doi.org/10.1002/bdm.752
  39. Marks, J., Copland, E., Loh, E., Sunstein, C. R., & Sharot, T. (2019). Epistemic spillovers: Learning others’ political views reduces the ability to assess and use their expertise in nonpolitical domains. Cognition, 188, 74–84. https://doi.org/10.1016/j.cognition.2018.10.003
  40. Marsden, P. V. (2006). Generalized blockmodeling. P. Doreian, V. Batagelj, A. Ferligoj, Cambridge University Press, New York (2005), (xv + 384 pp). Social Networks, 28(3), 275–282. https://doi.org/10.1016/j.socnet.2006.02.001
  41. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.
  42. McPhetres, J., Rand, D. G., & Pennycook, G. (2021). Character deprecation in fake news: Is it in supply or demand? Group Processes & Intergroup Relations, 24(4), 624–637.
  43. Metzger, M. J., Flanagin, A. J., Eyal, K., Lemus, D. R., & Mccann, R. M. (2003). Credibility for the 21st century: Integrating perspectives on source, message, and media credibility in the contemporary media environment. Annals of the International Communication Association, 27(1), 293–335. https://doi.org/10.1080/23808985.2003.11679029
  44. Motta, M., Callaghan, T., Sylvester, S., & Lunz-Trujillo, K. (2021). Identifying the prevalence, correlates, and policy consequences of anti-vaccine social identity. Politics, Groups, and Identities, 1–15.
  45. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. University of Illinois Press.
  46. Palan, S., & Schitter, C. (2018). Prolific. ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27.
  47. Pennycook, G., & Rand, D. G. (2019). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, 188, 39–50.
  48. Pennycook, G., & Rand, D. G. (2020). Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. Journal of Personality, 88(2), 185–200.
  49. Pennycook, G., & Rand, D. G. (2021). The psychology of fake news. Trends in Cognitive Sciences, 25(5), 388–402.
  50. Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological Science, 31(7), 770–780.
  51. Perry, B. L., Pescosolido, B. A., & Borgatti, S. P. (2018). Egocentric network analysis: Foundations, methods, and models. Cambridge University Press.
  52. Pew Research Center. (2014). Political Polarization and Personal Life. Retrieved from http://www.people-press.org/2014/06/12/section-3-political-polarization-and-personal-life/
  53. Pew Research Center. (2020). About one-fifth of Democrats and Republicans get political news in a kind of media bubble. A fifth of Democrats, Republicans get news only from outlets with like-minded audiences. Pew Research Center.
  54. PolitiFact, & Bloggers. (n.d.). PolitiFact - Did Nancy Pelosi vow to raise taxes if democrats take the U.S. House? @Politifact. Retrieved February 14, 2022, from http://www.politifact.com/factchecks/2018/apr/09/blog-posting/did-nancy-pelosi-vow-raise-taxes-if-democrats-take/
  55. Rathje, S., Van Bavel, J. J., & van der Linden, S. (2021). Out-group animosity drives engagement on social media. Proceedings of the National Academy of Sciences of the United States of America, 118(26), e2024292118. https://doi.org/10.1073/pnas.2024292118
  56. Robison, J., Leeper, T. J., & Druckman, J. N. (2018). Do disagreeable political discussion networks undermine attitude strength? Political Psychology, 39(2), 479–494.
  57. Roozenbeek, J., Schneider, C. R., Dryhurst, S., Kerr, J., Freeman, A. L., Recchia, G., van der Bles, A. M., & Van Der Linden, S. (2020). Susceptibility to misinformation about COVID-19 around the world. Royal Society Open Science, 7(10), 201199.
  58. Roozenbeek, J., Traberg, C. S., & van der Linden, S. (2022). Technique-based inoculation against real-world misinformation. Royal Society Open Science, 9(5), 211719.
  59. Schaedel, S. (2016, October 24). Did the pope endorse Trump? FactCheck.org. Retrieved from https://www.factcheck.org/2016/10/did-the-pope-endorse-trump/
  60. Shenhav, A., Rand, D. G., & Greene, J. D. (2012). Divine intuition: Cognitive style influences belief in God. Journal of Experimental Psychology: General, 141(3), 423.
  61. Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119(1), 3–22.
  62. Stets, J. E., & Burke, P. J. (2000). Identity theory and social identity theory. Social Psychology Quarterly, 63(3), 224–237.
  63. Stets, J. E., & Serpe, R. T. (Eds.). (2016). New directions in identity theory and research. Oxford University Press.
  64. Stets, J. E., Aldecoa, J., Bloom, Q., & Winegar, J. (2021). Using identity theory to understand homophily in groups. In P. S. Brenner, J. E. Stets, & R. T. Serpe (Eds.), Identities in action: Developments in identity theory (pp. 285–302). Springer International Publishing.
  65. Tajfel, H., Turner, J. C., Austin, W. G., & Worchel, S. (1979). An integrative theory of intergroup conflict. Organizational Identity: A Reader, 56(65), 9780203505984-16.
  66. Tardáguila, C. (2020). Coronavirus: Fact-checkers from 30 countries are fighting 3 waves of misinformation. Poynter. Retrieved from http://www/poynter.org/fact-checking/2020/coronavirus-fact-checkers-from-30-countries-are-fighting-3-waves-of-misinformation
  67. Thomson, K. S., & Oppenheimer, D. M. (2016). Cognitive reflection test-2. Judgment and Decision Making.
  68. Traberg, C. S. (2022). Misinformation: Broaden definition to curb its societal influence. Nature, 606(7915), 653–653.
  69. Traberg, C. S., & van der Linden, S. (2022). Birds of a feather are persuaded together: Perceived source credibility mediates the effect of political bias on misinformation susceptibility. Personality and Individual Differences, 185, 111269.
  70. Traberg, C. S., Roozenbeek, J., & van der Linden, S. (2022). Psychological inoculation against misinformation: Current evidence and future directions. The ANNALS of the American Academy of Political and Social Science, 700(1), 136–151.
  71. Unsworth, K. L., & Fielding, K. S. (2014). It’s political: How the salience of one’s political identity changes climate change beliefs and policy support. Global Environmental Change, 27(1), 131–137.
  72. Van Bavel, J. J., Harris, E. A., Pärnamets, P., Rathje, S., Doell, K. C., & Tucker, J. A. (2021). Political psychology in the digital (mis) information age: A model of news belief and sharing. Social Issues and Policy Review, 15(1), 84–113.
  73. van der Linden, S., Roozenbeek, J., & Compton, J. (2020). Inoculating against fake news about COVID-19. Frontiers in Psychology, 11, 566790.
  74. von Hohenberg, B. C. (2020). Truth and bias, left and right.
  75. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151.
  76. Westfall, J., Van Boven, L., Chambers, J. R., & Judd, C. M. (2015). Perceiving political polarization in the United States: Party identity strength and attitude extremity exacerbate the perceived partisan divide. Perspectives on Psychological Science, 10(2), 145–158.
  77. World Economic Forum. (2018). The global risks report 2018 – 13th edition. In Vol. 14, Issue 1. World economic forum. www.weforum.org
  78. Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676.
  79. Zhang, Y., Chen, F., & Lukito, J. (2022). Network amplification of politicized information and misinformation about COVID-19 by conservative media and partisan influencers on Twitter. Political Communication, 1–24.
DOI: https://doi.org/10.21307/connections-2019.044 | Journal eISSN: 2816-4245 | Journal ISSN: 0226-1766
Language: English
Page range: 165 - 180
Published on: Jun 28, 2024
Published by: International Network for Social Network Analysis (INSNA)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Matthew Facciani, Cecilie Steenbuch-Traberg, published by International Network for Social Network Analysis (INSNA)
This work is licensed under the Creative Commons Attribution 4.0 License.