References
- Anderson, T. R., Hawkins, E., Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187.
- US Department of Commerce, N. (2005, October 01). Global Monitoring Laboratory – Carbon Cycle Greenhouse Gases. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
- Rackley, S., (2009). Carbon Capture and Storage. Gulf Professional Publishing.
- Spash, C. L. (2007). Nicholas Stern, The Economics of Climate Change. Environmental Values, 16(4), 532.
- Więcław-Solny, L., Ściążko, M., Tatarczuk, A., Krótki, A., Wilk, A. (2011). Will CCS be cheaper? – New CO2 sorbents wanted. Polityka Energetyczna, 14, 441–453.
- Ksepko, E. (2015). Examining SrCuO2 as an oxygen carrier for chemical looping combustion. Journal of Thermal Analysis and Calorimetry, 122(2), 621–633.
- Ksepko, E. (2015). Feasible utility of inorganic remains from potable water purification process in chemical looping combustion studied in TG. Journal of Thermal Analysis and Calorimetry, 120(1), 457–470.
- Wang, Y., Zhao, L., Otto, A., Robinius, M., Stolten, D. (2017). A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 114, 650–665.
- Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design, 89(9), 1609–1624.
- Olajire, A. A. (2010). CO2 capture and separation technologies for end-of-pipe applications – A review. Energy, 35(6), 2610–2628.
- Ünveren, E. E., Monkul, B. O., Sarıoğlan, S., Karademir, N., Alper E. (2017). Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum, 3(1), 37–50.
- Xu, G., Li, L., Yang, Y., Tian, L., Liu, T., Zhang, K. (2012). A novel CO2 cryogenic liquefaction and separation system. Energy, 42(1), 522–529.
- Wilk, A., Więcław-Solny, L., Tatarczuk, A., Śpiewak, D., Krótki, A. (2013). Wpływ zmiany składu roztworu absorpcyjnego na efektywność procesu usuwania CO2 z gazów spalinowych (Effect of composition of absorption solution on carbon dioxide removal efficiency). Przemysł Chemiczny, 92(1), 120–125.
- Gouedard, C., Picq, D., Launay, F., Carrette, P.-L. (2012). Amine degradation in CO2 capture. I. A review. International Journal of Greenhouse Gas Control, 10, 244–270.
- Leupamier, H., Picq, D., Carrette, P. L. (2009). New amines for CO2 capture. II. Oxidative degradation mechanisms. Industrial & Engineering Chemistry Research, 48(20), 9068–9075.
- Krótki, A., Śpiewak, D., Więcław-Solny, L., Spietz, T., Tatarczuk, A. (2014). Badanie procesu usuwania CO2 metodą absorpcji aminowej w skali półtechnicznej (Research on carbon dioxide removal process using amine absorption method in a half-industrial scale). Inżynieria i Aparatura Chemiczna, 53(4), 265–266.
- Krótki, A., Tatarczuk, A., Więcław-Solny, L., Stec, M., Sobolewski, A., Tokarski, S. (2014). Absorpcja CO w roztworach amin szansą obniżenia emisji krajowych elektrowni węglowych (CO amine absorption as an opportunity to reduce emissions from domestic coal-fired power plants). Przemysł Chemiczny, 93(12), 2241–2245.
- Ziobrowski Z., Rotkegel, A. (2016). Pochłanianie ditlenku węgla w kolumnie wypełnionej zraszanej cieczą jonową (Removal of carbon dioxide in packed column sprinkled with ionic liquids). Przemysł Chemiczny, 95(9).
- Stec, M., Tatarczuk, A., Więcław-Solny, L., Krótki, A., Spietz, T., Wilk, A., Śpiewak, D. (2016). Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Technologies and Environmental Policy, 18, 151–160.
- Niegodajew P., Asendrych, D. (2016). Amine based CO2 capture – CFD simulation of absorber performance. Applied Mathematical Modelling, 40(23), 10222–10237.
- Cuzuel, V., Gouedard, C., Cuccia, L., Brunet, J., Rey, A., Dugay, J., Vial, J., Perbost-Prigent, F., Ponthus, J., Pichon, V., Carrette, P.-L. (2015). Amine degradation in CO2 capture. 4. Development of complementary analytical strategies for a comprehensive identification of degradation compounds of MEA. International Journal of Greenhouse Gas Control, 42, 439–453.
- Martin, S., Lepaumier, H., Picq, D., Kittel, J., de Bruin, T., Faraj, A., Carrette, P.-L. (2012). New Amines for CO2 Capture. IV. Degradation, Corrosion, and Quantitative Structure Property Relationship Model. Industrial & Engineering Chemistry Research, 51(18), 6283–6289.
- Fytianos, G., Grimstvedt, A., Knuutila, H., Svendsen, H. F. (2014). Effect of MEA’s Degradation Products on Corrosion at CO2 Capture Plants. Energy Procedia, 63, 1869–1875.
- Chakma, A., Meisen, A. (1987). Degradation of aqueous DEA solutions in a heat transfer tube. The Canadian Journal of Chemical Engineering, 65(2), 264–273.
- Liu, H., Namjoshi, O. A., Rochelle, G. T. (2014). Oxidative Degradation of Amine Solvents for CO2 Capture. Energy Procedia, 63, 1546–1557.
- Hatchell, D., Namjoshi, O., Fischer, K., Rochelle, G. T. (2014). Thermal Degradation of Linear Amines for CO2 Capture, Energy Procedia, 63, 1558–1568.
- Fredriksen S. B., Jens, K. J. (2013). Oxidative Degradation of Aqueous Amine Solutions of MEA, AMP, MDEA, PZ: A Review. Energy Procedia, 37, 1770–1777.
- Gouedard, C. (2014). Novel degradation products of ethanolamine (MEA) in CO2 capture conditions: identification, mechanisms proposal and transposition to other amines (PhD thesis, Pierre and Marie Curie University), France, Paris.
- Spietz, T., Stec, M., Tatarczuk, A., Więcław-Solny, L. (2015). Reduction of amines emission and their volatile degradation products. Chemik, 69(10), 625–634.
- Spietz, T., Dobras, S., Więcław-Solny, L., Krótki, A., (2017). Nitrosamines and nitramines in Carbon Capture plants. Environmental Protection and Natural Resources, 28(4), 43–50.
- Volkov, A., Vasilevsky, V., Bazhenov, S., Volkov, V., Rieder, A., Unterberger, S., Schallert, B. (2014). Reclaiming of Monoethanolamine (MEA) Used in Post-Combustion CO2-capture with Electrodialysis. Energy Procedia, 51, 148–153.
- Bazhenov, S., Vasilevsky, V., Rieder, A., Unterberger, S., Grushevenko, E., Volkov, V., Schallert, B., Volkov, A. (2014). Heat Stable Salts (HSS) Removal by Electrodialysis: Reclaiming of MEA Used in Postcombustion CO2-Capture. Energy Procedia, 63, 6349–6356.
- Vevelstad, S. J., Eide-Haugmo, I., da Silva, E. F., Svendsen, H. F. (2011). Degradation of MEA: a theoretical study. Energy Procedia, 4, 1608–1615.
- Strazisar, B. R., Anderson, R. R., White, C. M. (2003). Degradation Pathways for Monoethanolamine in a CO2 Capture Facility. Energy Fuels, 17(4), 1034–1039.
- Lepaumier, H., Martin, S., Picq, D., Delfort, B., Carrette, P.-L. (2010). New Amines for CO2 Capture. III. Effect of Alkyl Chain Length between Amine Functions on Polyamines Degradation. Industrial and Engineering Chemistry Research, 49(10), 4553–4560.
- Krótki, A., Więcław-Solny, L., Tatarczuk, A., Stec, M., Wilk, A., Spiewak, D., Spietz, T. (2016). Laboratory Studies of Post-combustion CO2 Capture by Absorption with MEA and AMP Solvents. Arabian Journal for Science and Engineering, 41(2), 371–379.
- Knudsen, J. N., Jensen, J. N., Vilhelmsen, P.-J., Biede, O. (2009). Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia, 1(1), 783–790.
- Moser, P., Schmidt, S., Stahl, K. (2011). Investigation of trace elements in the inlet and outlet streams of a MEA-based post-combustion capture process results from the test programme at the Niederaussem pilot plant. Energy Procedia, 4, 473–479.
- Reynolds, A.J., Verheyen, T. V., Adeloju, S. B., Meuleman, E., Chaffee, A., Cottrell, A. J., Feron, P. (2013). Chemical Characterization of MEA Degradation in PCC pilot plants operating in Australia. Energy Procedia, 37, 877–882.
- Reynolds, A.J., Verheyen, T. V., Adeloju, S. B., Meuleman, E., Feron, P. (2012). Towards Commercial Scale Postcombustion Capture of CO2 with Monoethanolamine Solvent: Key Considerations for Solvent Management and Environmental Impacts. Environmental Science and Technology, 46(7), 3643–3654.
- Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K., Svendsen, H. F. (2011). Comparison of MEA degradation in pilot-scale with lab-scale experiments. Energy Procedia, 4, 1652–1659.
- Goff, G. S., Rochelle, G. T. (2004). Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions. Industrial and Engineering Chemistry Research, 43(20), 6400–6408.
- Shen K. P., Li, M. H., (1992). Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. Journal of Chemical and Engineering Data, 37(1), 96–100.
- Krzemień, A., Więckol-Ryk, A., Smoliński, A., Koteras, A., Więcław-Solny, L. (2016). Assessing the risk of corrosion in amine-based CO2 capture process. Journal of Loss Prevention in the Process Industries, 43, 189–197.