References
- Geletuha, G. G., Zheleznaya, T. A., Kucheruk, P. P., & Olejnik, E. N. (2014). Sovremennoe sostoyanie i perspektivy razvitiya bioenergetiki v Ukraine (Modern state of the art and prospects of bioenergy development). Analiticheskaya zapiska BAU 9, (Analytical note of Bioenergy Association of Ukraine 9), 25.
- Kudria, S. O. (2015). Sostoyanie i perspektivy razvitiya vozobnovlyaemoj energetiki v Ukraine (State and prospects for development of renewable energy in Ukraine). Visnyk Natsionalnoi akademii nauk Ukrainy (Bulletin of the National Academy of Sciences of Ukraine), 12, 19–26.
- Ratushniak, H. S., Lialiuk, O. H., & Koshcheiev, I. A. (2017). Biohazovi ustanovky z vidnovliuvanymy dzherelamy enerhii termo-stabilizatsii protsesu fermentatsii biomasy (Biogas installations with renewable energy sources of thermo-stabilization biomass fermentation) Vinnytsia: VNTU, 110.
- Baader, W. (1978). Technische Voraussetzungen und Konsequenzen fur Biogasgewinnung im land-wirtschaftlichen Bereich. Landtechnik.
- Dubrovin, V. O., Melnichuk, M. D., & Melnik, Y. F. (2009). Bioenergiya v Ukrayini – rozvitok silskih teritorij ta mozhlivosti dlya okremih gromad. (Bioenergy in Ukraine-rural development and opportunities for individual communities) K: NUBiP Ukrainy. (Kyiv: The National University of Life and Environmental Sciences of Ukraine), 111.
- Serbin, V. A. (2003). Netradicijni ta ponovlyuvani dzherela energiyi v sistemah TGP. (Non-conventional and renewable systems in HVAC) Makiyivka: Donbas National Academy of Civil Engineering and Architecture, 153.
- Drukovanyi, M. F. (2010). Suchasni tekhnolohii pererobky biomasy v biohaz ta orhanichni dobryva (Modern technologies of biomass processing into biogas and organic fertilizers). Zb. nauk. prats Vinnytskoho nats. ahrar. un-tu (Coll. of Science Works of Vinnytsia National Agrarian University), 42, 125–140.
- Joshua, O. S., Ejura, G. J., Bako, I. C., Gbaja, I. S., & Yusuf, Y. I. (2014). Fundamental principles of biogas product. Int J Sci Eng Res (IJSER), 2(8), 47–50.
- Golub, N., Kozlovets, O., & Voyevoda, D. (2016). Technology of anaerobic-aerobic purification of wastewater from nitrogen compounds after obtaining biogas. Eastern-European Journal of Enterprise Technologies, 3(10), 35–40.
- Geletuha, G. G., & Kobzar’, S. G. (2002). Sovremennye tekhnologii anaerobnogo sbrazhivaniya biomassy (Obzor) (Modern technologies of anaerobic digestion of biomass (Review)). Ekotekhnologii i resursosberezhenie (Ecotechnologies and resource conservation), 4, 3–10.
- Zhelykh, V. M., & Furdas, Yu. V. (2013). Pidtrymannia teplovoho rezhymu bioreaktora pid chas zastosuvannia soniachnoi enerhii (The bioreactor thermal regime maintaining when using solar energy). Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi (Modern Technology, Materials and Design in Construction), 1, 142–148.
- Borovska, T. M., & Severilov, P. V. (2009). Modeliuvannia y optymizatsiia system vyrobnytstva biohazu (Modeling and optimization of biogas production systems). Naukovi pratsi VNTU (Scientific works of VNTU), 2, 1–9.
- Ratushnyak, G. S. (2012). Intensification of Biogas Production By Means of Mechanical Mixing of The Substrate. Tap Chi Khoa hoc & Cong nghe, 8, 57.
- Redko, A. O., Bezrodnyi, M. K., Zahoruchenko, M. V., Redko, O. F., Ratushniak, H. S., & Khmelniuk, M. H. (2016). Nyzkopotentsiina enerhetyka (Low-potential energy). Kharkiv: TOV “Drukarnia Madryd”, 412.
- Tkachenko, S. Y., Stepanov, D. V., & Stepanova, N. D. (2020). Analiz sotsialnoi ta enerho-i pryrodozberezhnoi efektyvnosti realizatsii biohazovoi tekhnolohii (Analysis of social and energy-environmental efficiency of biogas technology’s realization). Visnyk Vinnytskoho politekhnichnoho instytutu (Herald of Vinnytsia politechnical institute), 2, 34–41.
- Ziemiński, K., & Frąc, M. (2012). Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology, 11(18), 4127–4139.
- Zemlianka, O. O., & Hubynskyi, M. V. (2009). Vybir ratsionalnykh rezhymiv roboty reaktora biohazovoi ustanovky. (The choice of rational modes of operation of the biogas installation reactor). Tekhnichna teplofizyka ta promyslova teploenerhetyka (Technical thermophysics and industrial thermal power engineering), 1, 112–120.
- Weiland, P. (2003). Production and energetic use of biogas from energy crops and wastes in Germany. Applied biochemistry and biotechnology, 109(1-3), 263–274.
- Zuiev, O. O. (2009). Ekonomichni aspekty vprovadzhennia suchasnykh biohazovykh ustanovok (Economic aspects of modern biogas installations implementation). Proceedings of the Tavria State agrotechnological university, 5(9), 88–92. Retrieved from: http/www.nbuv.gov.ua/portal/chem.biol/ptdan/2009_9_5/5113.pdf.
- Rotshtein, O. P., Lariushkin, P., & Mitiushkin, Yu. I. (2008). Soft computing v biotekhnolohii: bahatofaktornyi analiz i diahnostyka (Soft computing in biotechnology: multivariate analysis and diagnostics). Vinnytsia: UNIVERSUM-Vinnytsia, 144.
- Baral, S., Pudasaini, S., Khanal, S., & Gurung, D. (2013). Mathematical modelling, finite element simulation and experimental validation of biogas-digester slurry temperature. International Journal of Energy and Power Engineering, 2(3), 128–135.
- Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: linkages to trace gases and aerobic processes. In Biogeochemistry, 317–392.
- Pham, C. H., Vu, C. C., Sommer, S. G., & Bruun, S. (2014). Factors affecting process temperature and biogas production in small-scale rural biogas digesters in winter in northern Vietnam. Asian-Australasian journal of animal sciences, 27(7), 1050–1056.
- Tkachenko, S. Y., & Rezydent, N. V. (2011). Teploobmin v systemakh biokonversii (Heat transfer in bioconversion systems). Vinnytsia: VNTU.
- Turkdogan-Aydınol, F. I., & Yetilmezsoy, K. (2010). A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. Journal of hazardous materials, 182(1–3), 460–471.
- Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems – a review. Renewable and sustainable energy reviews, 48, 585–607.
- Finzi, A., Oberti, R., Riva, E., & Provolo, G. (2014). A Simple Fuzzy Logic Management SupportSystem for Farm Biogas Plants. Applied Engineering in Agriculture, 30(3), 509–518.
- Blesgen, A., & Hass, V. C. (2010). Efficient biogas production through process simulation. Energy & fuels, 24(9), 4721–4727.
- Chen, T., Shen, D., Jin, Y., Li, H., Yu, Z., Feng, H., … & Yin, J. (2017). Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model. Applied Energy, 208, 666–677.
- Djatkov, D., Effenberger, M., & Martinov, M. (2014). Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems. Applied energy, 134, 163–175.
- Latinwo, G. K., & Agarry, S. E. (2015). Modelling the kinetics of biogas production from mesophilic anaerobic co-digestion of cow dung with plantain peels. International Journal of Renewable Energy Development, 4(1), 55.
- Yordanova, S. N. E. J. A. N. A. (2007). Single input fuzzy control for nonlinear and time-varying plant. In Proc. of the 11th WSEAS international conference on Systems, 189–193.
- Wahmkow, C., Knape, M., & Konnerth, E. (2013, June). Biogas Intelligence-operate biogas plants using Neural Network and Fuzzy logic. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 1483–1488. IEEE.