Have a personal or library account? Click to login
Long-Term Effect of Different Particle Size Distributions of Waste Glass Powder on the Mechanical Properties of Concrete Cover

Long-Term Effect of Different Particle Size Distributions of Waste Glass Powder on the Mechanical Properties of Concrete

By: Brwa OMER and  Jalal SAEED  
Open Access
|Jan 2021

References

  1. Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
  2. Sonebi, M., Ammar, Y., & Diederich, P. (2016). Sustainability of cement, concrete and cement replacement materials in construction. Elsevier, In Sustainability of Construction Materials, 371–396. https://doi.org/10.1016/B978-0-08-100370-1.00015-9
  3. Federico, L. (2013). Waste glass – a supplementary cementitious material (Doctoral dissertation). McMaster University, Hamilton, Ontario, Canada. http://hdl.handle.net/11375/13455
  4. Omran, A., & Tagnit-hamou, A. (2016). Performance of glass-powder concrete in field applications. Construction and Building Materials, 109, 84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006
  5. Islam, G. M. S., Rahman, M. H., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005
  6. Shao, Y., Lefort, T., Moras, S., & Rodriguez, D. (2000). Studies on concrete containing ground waste glass. Cement and Concrete Research, 30(1), 91–100. https://doi.org/10.1016/S0008-8846(99)00213-6
  7. Idir, R., Cyr, M., & Tagnit-Hamou, A. (2010). Use of waste glass in cement-based materials. Déchets Sciences et Techniques, 9. https://doi.org/10.4267/dechets-sciences-techniques. 3132
  8. Aladdine, F., Laldji, S., & Tagnit-Hamou, A. (2009). Glass powder as an alternative cementitious material in concrete. In 10th ACI Int. Conf. Recent Advances in Concrete Tech. and Sustainability Issues, Seville, Espagne, 683–698.
  9. Matos, A. M., & Sousa-Coutinho, J. (2012). Durability of mortar using waste glass powder as cement replacement. Construction and Building Materials, 36, 205–215. https://doi.org/10.1016/j.conbuildmat.2012.04.027
  10. Dyer, T. D., & Dhir, R. K. (2001). Chemical reactions of glass cullet used as cement component. Journal of Materials in Civil Engineering, 13(6), 412–417. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412)
  11. Kalakada, Z., & Doh, J. H. (2020). Studies on Recycled Waste Glass Powder as Binder in Concrete. In ACMSM25, 61–70. Springer. https://doi.org/10.1007/978-981-13-7603-0_7
  12. Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016
  13. Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221–229. Singapore: Springer Singapore.
  14. Schwarz, N., Cam, H., & Neithalath, N. (2008). Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 30, 486–496. https://doi.org/10.1016/j.cemconcomp.2008.02.001
  15. Omran, A., Harbec, D., Tagnit-Hamou, A., & Gagne, R. (2017). Production of roller-compacted concrete using glass powder: Field study. Construction and Building Materials, 133, 450–458. https://doi.org/10.1016/j.conbuildmat.2016.12.099
  16. Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36(3), 457–468. https://doi.org/10.1016/j.cemconres.2005.12.012
  17. Karamberi, A., & Moutsatsou, A. (2005). Participation of coloured glass cullet in cementitious materials. Cement and Concrete Composites, 27(2), 319–327. https://doi.org/10.1016/j.cemconcomp.2004.02.021
  18. Schwarz, N., & Neithalath, N. (2007). Quantifying the cementing efficiency of fine glass powder and its comparison to fly ash. In A. M. Amde, G. M. Sabnis, & J. S. Y. Tan (Eds.), Proceedings of the 1st International Conference on Recent Advances in Concrete Technology, RAC 2007, 735–746. DEStech Publications Inc.
  19. Chen, C. H., Huang, R., Wu, J. K., & Yang, C. C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research, 36(3), 449–456. https://doi.org/10.1016/j.cemconres.2005.12.010
  20. Khmiri, A., Chaabouni, M., & Samet, B. (2013). Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Construction and Building Materials, 44, 74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040
  21. Zheng, K. (2016). Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction. Cement and Concrete Composites, 67, 30–38. https://doi.org/10.1016/j.cemconcomp.2015.12.008
  22. Nassar, R.-U.-D., & Soroushian, P. (2012). Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061
  23. He, Z., Zhan, P., Du, S., Liu, B., & Yuan, W. (2019). Creep behavior of concrete containing glass powder. Composites Part B: Engineering, 166, 13–20. https://doi.org/10.1016/j.compositesb.2018.11.133
  24. Jiang, Y., Ling, T.-C., Mo, K. H., & Shi, C. (2019). A critical review of waste glass powder--Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242, 440–449. https://doi.org/10.1016/j.jenvman.2019.04.098
  25. Kumarappan, N. (2013). Partial replacement cement in concrete using waste glass. International Journal of Engineering Research and Technology, 2(10), 1880–1883.
  26. Khatib, J. M., Negim, E. M., Sohl, H. S., & Chileshe, N. (2012). Glass Powder Utilisation in Concrete Production. European Journal of Applied Sciences, 4(4), 173–176. DOI: 10.5829/idosi.ejas.2012.4.4.1102
  27. Vandhiyan, R., Ramkumar, K., & Ramya, R. (2013). Experimental study on replacement of cement by glass powder. Int. J. Eng. Res. Technol, 2(5), 234–238.
  28. Elaqra, H. A., Al-Afghany, M. J., Abo-Hasseira, A. B., Elmasry, I. H., Tabasi, A. M., & Alwan, M. D. (2019). Effect of immersion time of glass powder on mechanical properties of concrete contained glass powder as cement replacement. Construction and Building Materials, 206, 674–682. https://doi.org/10.1016/j.conbuildmat.2019.02.110
  29. Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221–229. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9539-0_23
  30. Omran, A. F., D.-Morin, E., Harbec, D., & Tagnit-Hamou, A. (2017). Long-term performance of glass-powder concrete in large-scale field applications. Construction and Building Materials, 135, 43–58. https://doi.org/10.1016/j.conbuildmat.2016.12.218
  31. Nassar, R. U. D., & Soroushian, P. (2011). Field investigation of concrete incorporating milled waste glass. The Journal of Solid Waste Technology and Management, 37(4), 307–319. https://doi.org/10.5276/JSWTM.2011.307
  32. ASTM C618-15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0618-15
  33. ASTM C136/C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0136_C0136M-14.
  34. ASTM C33/C33M-13, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2013, www.astm.org. DOI: 10.1520/C0033_C0033M-13.
  35. ASTM C192/C192M-15, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0192_C0192M-15.
  36. ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0469_C0469M-14
  37. ASTM C39/C39M-15a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0039_C0039M-15A
  38. ASTM C496/C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004, www.astm.org. DOI:10.1520/C0496_C0496M-11
  39. ASTM C78/C78M-15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0078_C0078M-15A
  40. Noaman, A. T., Bakar, B. H. A., & Akil, H. M. (2016). Experimental investigation on compression toughness of rubberized steel fibre concrete. Construction and Building Materials, 115, 163–170. https://doi.org/10.1016/j.conbuildmat.2016.04.022
  41. Poon, C. S., Shui, Z. H., & Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(12), 2215–2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  42. Van Gysel, A., & Taerwe, L. (1996). Analytical formulation of the complete stress-strain curve for high strength concrete. Materials and Structures, 29(9), 529–533. https://doi.org/10.1007/BF02485952
  43. Omran, A., Soliman, N., Zidol, A., & Tagnit-Hamou, A. (2018). Performance of ground-glass pozzolan as a cementitious material – a review. Advances in Civil Engineering Materials, 7(1), 237–270. https://doi.org/10.1520/ACEM20170125
  44. Schwarz, N., DuBois, M., & Neithalath, N. (2007). Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cement and Concrete Composites, 29(9), 656–666. https://doi.org/ https://doi.org/10.1016/j.cemconcomp. 2007.05.005
  45. Kamali, M., & Ghahremaninezhad, A. (2016). An investigation into the hydration and microstructure of cement pastes modified with glass powders. Construction and Building Materials, 112, 915–924. https://doi.org/10.1016/j.conbuildmat.2016.02.085
  46. ASTM C143/C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0143_C0143M-15A
  47. Omer, B., & Saeed, J. (2020). Characterizations and Modeling the Influence of Particle Size Distributions (PSD) of Glass Powder on the Mechanical Behavior of Normal Strength Concrete. Civil Engineering and Architecture, 8(5), 993–1005. DOI: 10.13189/cea.2020.080526
  48. Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and Concrete Research, 34(1), 81–89. https://doi.org/10.1016/S0008-8846(03)00251-5
  49. Rashad, A. M. (2014). Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Construction and Building Materials, 72, 340–357.
  50. Johnston, C. (1974). Waste Glass as Coarse Aggregate for Concrete. Journal of Testing and Evaluation, 2(5), 344–350. Retrieved from https://doi.org/10.1520/JTE10117J
  51. Kozlova, S., Millrath, K., Meyer, C., & Shimanovich, S. (2004). A suggested screening test for ASR in cement-bound composites containing glass aggregate based on autoclaving. Cement and Concrete Composites, 26(7), 827–835. https://doi.org/ https://doi.org/10.1016/j.cemconcomp. 2003.03.001
  52. Jin W. (1998). Alkali-silica reaction in concrete with glass aggregate. A Chemo physicmechanical Approach, PhD Dissertation, Columbia University, (1998).
  53. Fernandes, I., & Broekmans, M. A. (2013). Alkali–silica reactions: an overview. Part I. Metallography, Microstructure, and Analysis, 2(4), 257–267. https://doi.org/10.1007/s13632-013-0085-5
  54. Specification, Iraqi Standard, (1984). No. 5/1984, Portland Cement. Central Organization for Standardization & Quality Control (COSQC), Baghdad, Iraq, 1984.
DOI: https://doi.org/10.21307/acee-2020-030 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 61 - 75
Submitted on: Sep 3, 2020
Accepted on: Dec 3, 2020
Published on: Jan 27, 2021
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Brwa OMER, Jalal SAEED, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.