References
- Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
- Sonebi, M., Ammar, Y., & Diederich, P. (2016). Sustainability of cement, concrete and cement replacement materials in construction. Elsevier, In Sustainability of Construction Materials, 371–396. https://doi.org/10.1016/B978-0-08-100370-1.00015-9
- Federico, L. (2013). Waste glass – a supplementary cementitious material (Doctoral dissertation). McMaster University, Hamilton, Ontario, Canada. http://hdl.handle.net/11375/13455
- Omran, A., & Tagnit-hamou, A. (2016). Performance of glass-powder concrete in field applications. Construction and Building Materials, 109, 84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006
- Islam, G. M. S., Rahman, M. H., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005
- Shao, Y., Lefort, T., Moras, S., & Rodriguez, D. (2000). Studies on concrete containing ground waste glass. Cement and Concrete Research, 30(1), 91–100. https://doi.org/10.1016/S0008-8846(99)00213-6
- Idir, R., Cyr, M., & Tagnit-Hamou, A. (2010). Use of waste glass in cement-based materials. Déchets Sciences et Techniques, 9. https://doi.org/10.4267/dechets-sciences-techniques. 3132
- Aladdine, F., Laldji, S., & Tagnit-Hamou, A. (2009). Glass powder as an alternative cementitious material in concrete. In 10th ACI Int. Conf. Recent Advances in Concrete Tech. and Sustainability Issues, Seville, Espagne, 683–698.
- Matos, A. M., & Sousa-Coutinho, J. (2012). Durability of mortar using waste glass powder as cement replacement. Construction and Building Materials, 36, 205–215. https://doi.org/10.1016/j.conbuildmat.2012.04.027
- Dyer, T. D., & Dhir, R. K. (2001). Chemical reactions of glass cullet used as cement component. Journal of Materials in Civil Engineering, 13(6), 412–417. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(412)
- Kalakada, Z., & Doh, J. H. (2020). Studies on Recycled Waste Glass Powder as Binder in Concrete. In ACMSM25, 61–70. Springer. https://doi.org/10.1007/978-981-13-7603-0_7
- Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016
- Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221–229. Singapore: Springer Singapore.
- Schwarz, N., Cam, H., & Neithalath, N. (2008). Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 30, 486–496. https://doi.org/10.1016/j.cemconcomp.2008.02.001
- Omran, A., Harbec, D., Tagnit-Hamou, A., & Gagne, R. (2017). Production of roller-compacted concrete using glass powder: Field study. Construction and Building Materials, 133, 450–458. https://doi.org/10.1016/j.conbuildmat.2016.12.099
- Shayan, A., & Xu, A. (2006). Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs. Cement and Concrete Research, 36(3), 457–468. https://doi.org/10.1016/j.cemconres.2005.12.012
- Karamberi, A., & Moutsatsou, A. (2005). Participation of coloured glass cullet in cementitious materials. Cement and Concrete Composites, 27(2), 319–327. https://doi.org/10.1016/j.cemconcomp.2004.02.021
- Schwarz, N., & Neithalath, N. (2007). Quantifying the cementing efficiency of fine glass powder and its comparison to fly ash. In A. M. Amde, G. M. Sabnis, & J. S. Y. Tan (Eds.), Proceedings of the 1st International Conference on Recent Advances in Concrete Technology, RAC 2007, 735–746. DEStech Publications Inc.
- Chen, C. H., Huang, R., Wu, J. K., & Yang, C. C. (2006). Waste E-glass particles used in cementitious mixtures. Cement and Concrete Research, 36(3), 449–456. https://doi.org/10.1016/j.cemconres.2005.12.010
- Khmiri, A., Chaabouni, M., & Samet, B. (2013). Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Construction and Building Materials, 44, 74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040
- Zheng, K. (2016). Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction. Cement and Concrete Composites, 67, 30–38. https://doi.org/10.1016/j.cemconcomp.2015.12.008
- Nassar, R.-U.-D., & Soroushian, P. (2012). Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061
- He, Z., Zhan, P., Du, S., Liu, B., & Yuan, W. (2019). Creep behavior of concrete containing glass powder. Composites Part B: Engineering, 166, 13–20. https://doi.org/10.1016/j.compositesb.2018.11.133
- Jiang, Y., Ling, T.-C., Mo, K. H., & Shi, C. (2019). A critical review of waste glass powder--Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242, 440–449. https://doi.org/10.1016/j.jenvman.2019.04.098
- Kumarappan, N. (2013). Partial replacement cement in concrete using waste glass. International Journal of Engineering Research and Technology, 2(10), 1880–1883.
- Khatib, J. M., Negim, E. M., Sohl, H. S., & Chileshe, N. (2012). Glass Powder Utilisation in Concrete Production. European Journal of Applied Sciences, 4(4), 173–176. DOI: 10.5829/idosi.ejas.2012.4.4.1102
- Vandhiyan, R., Ramkumar, K., & Ramya, R. (2013). Experimental study on replacement of cement by glass powder. Int. J. Eng. Res. Technol, 2(5), 234–238.
- Elaqra, H. A., Al-Afghany, M. J., Abo-Hasseira, A. B., Elmasry, I. H., Tabasi, A. M., & Alwan, M. D. (2019). Effect of immersion time of glass powder on mechanical properties of concrete contained glass powder as cement replacement. Construction and Building Materials, 206, 674–682. https://doi.org/10.1016/j.conbuildmat.2019.02.110
- Naaamandadin, N. A., Abdul Aziz, I. S., Mustafa, W. A., & Santiagoo, R. (2020). Mechanical Properties of the Utilisation Glass Powder as Partial Replacement of Cement in Concrete. In Z. Jamaludin & M. N. Ali Mokhtar (Eds.), Intelligent Manufacturing and Mechatronics, 221–229. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9539-0_23
- Omran, A. F., D.-Morin, E., Harbec, D., & Tagnit-Hamou, A. (2017). Long-term performance of glass-powder concrete in large-scale field applications. Construction and Building Materials, 135, 43–58. https://doi.org/10.1016/j.conbuildmat.2016.12.218
- Nassar, R. U. D., & Soroushian, P. (2011). Field investigation of concrete incorporating milled waste glass. The Journal of Solid Waste Technology and Management, 37(4), 307–319. https://doi.org/10.5276/JSWTM.2011.307
- ASTM C618-15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0618-15
- ASTM C136/C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0136_C0136M-14.
- ASTM C33/C33M-13, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2013, www.astm.org. DOI: 10.1520/C0033_C0033M-13.
- ASTM C192/C192M-15, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0192_C0192M-15.
- ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, 2014, www.astm.org. DOI: 10.1520/C0469_C0469M-14
- ASTM C39/C39M-15a, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0039_C0039M-15A
- ASTM C496/C496M-11, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2004, www.astm.org. DOI:10.1520/C0496_C0496M-11
- ASTM C78/C78M-15a, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI:10.1520/C0078_C0078M-15A
- Noaman, A. T., Bakar, B. H. A., & Akil, H. M. (2016). Experimental investigation on compression toughness of rubberized steel fibre concrete. Construction and Building Materials, 115, 163–170. https://doi.org/10.1016/j.conbuildmat.2016.04.022
- Poon, C. S., Shui, Z. H., & Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(12), 2215–2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Van Gysel, A., & Taerwe, L. (1996). Analytical formulation of the complete stress-strain curve for high strength concrete. Materials and Structures, 29(9), 529–533. https://doi.org/10.1007/BF02485952
- Omran, A., Soliman, N., Zidol, A., & Tagnit-Hamou, A. (2018). Performance of ground-glass pozzolan as a cementitious material – a review. Advances in Civil Engineering Materials, 7(1), 237–270. https://doi.org/10.1520/ACEM20170125
- Schwarz, N., DuBois, M., & Neithalath, N. (2007). Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cement and Concrete Composites, 29(9), 656–666. https://doi.org/ https://doi.org/10.1016/j.cemconcomp. 2007.05.005
- Kamali, M., & Ghahremaninezhad, A. (2016). An investigation into the hydration and microstructure of cement pastes modified with glass powders. Construction and Building Materials, 112, 915–924. https://doi.org/10.1016/j.conbuildmat.2016.02.085
- ASTM C143/C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org. DOI: 10.1520/C0143_C0143M-15A
- Omer, B., & Saeed, J. (2020). Characterizations and Modeling the Influence of Particle Size Distributions (PSD) of Glass Powder on the Mechanical Behavior of Normal Strength Concrete. Civil Engineering and Architecture, 8(5), 993–1005. DOI: 10.13189/cea.2020.080526
- Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and Concrete Research, 34(1), 81–89. https://doi.org/10.1016/S0008-8846(03)00251-5
- Rashad, A. M. (2014). Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Construction and Building Materials, 72, 340–357.
- Johnston, C. (1974). Waste Glass as Coarse Aggregate for Concrete. Journal of Testing and Evaluation, 2(5), 344–350. Retrieved from https://doi.org/10.1520/JTE10117J
- Kozlova, S., Millrath, K., Meyer, C., & Shimanovich, S. (2004). A suggested screening test for ASR in cement-bound composites containing glass aggregate based on autoclaving. Cement and Concrete Composites, 26(7), 827–835. https://doi.org/ https://doi.org/10.1016/j.cemconcomp. 2003.03.001
- Jin W. (1998). Alkali-silica reaction in concrete with glass aggregate. A Chemo physicmechanical Approach, PhD Dissertation, Columbia University, (1998).
- Fernandes, I., & Broekmans, M. A. (2013). Alkali–silica reactions: an overview. Part I. Metallography, Microstructure, and Analysis, 2(4), 257–267. https://doi.org/10.1007/s13632-013-0085-5
- Specification, Iraqi Standard, (1984). No. 5/1984, Portland Cement. Central Organization for Standardization & Quality Control (COSQC), Baghdad, Iraq, 1984.