Have a personal or library account? Click to login
Shaping of Axially Compressed Bipolarly Prestressed Closely Spaced Built-Up Members Cover

Shaping of Axially Compressed Bipolarly Prestressed Closely Spaced Built-Up Members

Open Access
|Apr 2020

References

  1. Chesson, E. Jr., & Munse, W. H. (1963). Riveted and Bolted Joints: Truss-Type Tensile Connections. J. Struct. Div., 89(1), 67–106.
  2. McCormac, M. C., & Csernak, S. F. (2012). Structural steel design. New Jersey: Prentice Hall.
  3. Subramanian, N. (2010). Steel Structures. Design and practice. New Delhi: Oxford University Press.
  4. Büttner, O., & Stenker, H. (1975). Light metal constructions. Warsaw: Arkady. (in Polish)
  5. Space structures (1985). edited by Bródka, J. Arkady: Warsaw. (in Polish)
  6. Chilton, J. (2000). Space grid structures. Oxford: Architectural Press.
  7. Porto, C. E. (2014). The innovative structural conception in Stéphane du Château’s work: from metallic trusses to the development of spatial frames. Architectus 4, 51–64.
  8. Kowal, Z. (2011). The formation of space bar structures supported by the system reliability theory. Arch. Civ. Mech. Eng. 11(1), 115–133.
  9. Kowal, Z., Piotrowski, R., & Szychowski, A. (2012). Adaptation of halls with roof covering to solar radiation energy extraction. Zeszyty Naukowe Politechniki Rzeszowskiej, 283, 59(2/2012/II), 431–438 (in Polish).
  10. Kowal, Z., Siedlecka, M., Piotrowski, R., Brzezińska, K., Otwinowska, K., & Szychowski, A. (2015). Shapes of energy-active segments of steel buildings. Arch. Civ. Eng., 61(3), 119–132.
  11. Kubicka, K., Radoń, U., Szaniec, W., & Pawlak, U. (2017). Comparative Analysis of the Reliability of Steel Structure with Pinned and Rigid Nodes Subjected to Fire. IOP Conf. Ser.: Mater. Sci. Eng. 245, 022051 1–9.
  12. Timoshenko, S. P. (1966). History of strength of materials. Warsaw: Arkady (in Polish).
  13. Engesser, F. (1889). Über Knickfestigkeitgerader Stäbe. Zeitschriftfür Architekten und Ingenieurwesen, 35(4), 455–462.
  14. Haringx, J. A. (1949). Elastic stability of helical springs at a compression larger than original length. Appl. Sci. Res., 1(1), 417–434.
  15. Bleich, F. (1952). Buckling strength of metal structures. New York: Mc Graw-Hill.
  16. Timoshenko, S. P., & Gere, J. M. (1963). Theory of elastic stability. Warsaw: Arkady (in Polish).
  17. Kowal, Z. (2001). About the critical load bearing capacity of battened columns. Inżynieria i Budownictwo, 10, 580–582 (in Polish).
  18. Bažant, Z. P. (2003). Shear Buckling of Sandwich, Fiber Composite and Lattice Columns, Bearings, and Helical Springs: Paradox Resolved. J. Appl. Mech., 70, 75–83.
  19. Aslani, F., & Goel, S. C. (1991). An Analytical Criterion for Buckling Strength of Built-up Compression Members. Eng. J., 28(4), 159–168.
  20. AISC LRFD: 1994. Load and resistance factor design, American Institute of Steel Construction (AISC), Chicago.
  21. Temple, M. C., & El-Mahdy, G. M. (1993). Buckling of built-up compression members in the plane of the connectors. Can. J. Civ. Eng., 20, 895–909.
  22. Temple, M. C., & El-Mahdy, G. M. (1995). Local effective length factor in the equivalent slenderness ratio. Can. J. Civ. Eng., 22, 1164–1170.
  23. Lue, D. M., Yen, T., & Liu, J. L. (2006). Experimental Investigation on Built-up Columns. J. Constr. Steel Res., 62, 1325–1332.
  24. Liu, J. L., Lue, D. M., & Lin, Ch. H. (2009). Investigation on Slenderness Ratios of Built-up Compression Members. J. Constr. Steel Res., 65, 237–248.
  25. AISC-LRFD:2005. Load and resistance factor design. Specification for structural steel buildings. American Institute of Steel Construction: Chicago.
  26. AS-4100:1998. Steel structures. Standards Association of Australia, Homebush, Australia, 1998.
  27. CSA S16-01:2001. Limit states design of steel structures. Canadian Standards Association, Toronto.
  28. Abejide, O. S., & Masce, P. E. (2007). Evaluation of Effective Lengths of Braced Double Angle Diagonals. Res. J. Appl. Sci, 2(10), 1060–1065.
  29. CEN: 2003. Eurocode 3: Design of Steel Structures. Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization.
  30. AISC: 1999. Load and resistance factor design. Specification for structural steel buildings. American Institute of Steel Construction, Chicago.
  31. BS5950: 2000. Structural Use of Steelwork in Buildings. British Standards Institution, London.
  32. Stone, T. A., & La Boube, R. A. (2005). Behavior of cold-formed steel built-up I-sections. Thin-Walled Struct., 43, 1805–1817.
  33. Ting, T. C. H., & Lau, H. H. (2011) Compression Test on Cold-formed Steel Built-up Back-to-back Channels Stub Columns. Adv. Mater. Res., 201–203: 2900–2903.
  34. Anbarasu, M., Kanagarasu, K., & Sukumar, S. (2015). Investigation on the behaviour and strength of cold-formed steel web stiffened built-up battened columns. Mater. and Struct., 48, 4029–4038.
  35. Zhang, J.-H., & Young, B. (2015). Numerical investigation and design of cold-formed steel built-up open section columns with longitudinal stiffeners. Thin-Walled Struct., 89, 178–191.
  36. Tamai, H., Yamanishi, T., Takamatsu, T. & Matsuo, A. (2011). Experimental study on lateral buckling behavior of weld-free built-up member made of H-SA700A high-strength steel. J. Struct. Constr. Eng. 2, 407–415.
  37. Słowiński, K., & Wuwer, W. (2016). Blind-bolted shear connections for axially compressed RHS columns strengthened with open sections. J. Constr. Steel Res. 127, 15–27.
  38. Słowiński, K., & Wuwer, W. (2016). Technology of reinforcing of compressed steel bars with closed and open cross-sections. Fastener: rynek elementów złącznych, 1, 43–47.
  39. Deniziak, P., & Winkelmann, K. (2018). TS-based RSM-aided design of cold-formed steel stiffened C-sectional columns susceptible to buckling, Shell Struct.: Theory and Applications, 4, 533–536.
  40. Deniziak, P., & Winkelmann, K. (2018). Influence of nonlinearities on the efficiency and accuracy of FEM calculations on the example of a steel build-up thin-walled column. MATEC Web of Conferences, 219, 02010 1–8.
  41. PN-EN 1993-1-1:2006 Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings. The Polish Committee for Standardization, Warsaw.
  42. Kowal, Z., & Siedlecka, M. (2017). Load bearing capacity of compressed closely spaced built-up members in space structures. JCEEA, 34, 64(3/I/17), 407–416.
  43. ABAQUS 6.14. PDF Documentation. Abaqus Analysis User’s Guide, Simulia, Dassault Systèmes, 2014.
  44. ABAQUS 6.14. PDF Documentation. Abaqus/CAE User’s Guide, Simulia, Dassault Systèmes, 2014.
  45. ABAQUS 6.14. PDF Documentation. Abaqus Theory Guide, Simulia, Dassault Systèmes 2014.
DOI: https://doi.org/10.21307/acee-2020-007 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 87 - 100
Submitted on: Sep 5, 2019
Accepted on: Dec 28, 2019
Published on: Apr 8, 2020
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Monika SIEDLECKA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.