References
- Grin, J., Rotmans, J., & Schot, J. (2010). Transitions to Sustainable Development. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. doi:10.4324/9780203856598
- Zuo, J., & Zhao, Z. Y. (2014). Green building research-current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281. doi:10.1016/j.rser.2013.10.021
- Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. doi:10.1016/j.conbuildmat.2014.07.003
- Węglorz, M. (2014). Selected Aspects of Sustainable Civil Engineering. Architecture Civil Engineering Environment, 7(1), 41–47.
- Milošević, P. (2012). Sustainable Eco Planning Strategies in East Europe (Case Study of Belgrade). Architecture Civil Engineering Environment, 5(4), 29–42.
- Pawlikowska-Piechotka, A., & Piechotka, M. (2012). Urban Sustainable Development and Green Agenda Perspective (Case Study in Warsaw). Architecture Civil Engineering Environment, 5(4), 43–52.
- Słyk, J. (2015). Methodology of Architectural Design And Rules of Cooperation in The Digital Enviroment. Augmented Space as a Field of Research and Alternative Environment for Architectural Creation. Architecture Civil Engineering Environment, 8(4), 11–18.
- Witkowski, H. (2015). Sustainability of Self-Compacting Concrete. Architecture Civil Engineering Environment, 8(1), 83–88.
- Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., … Černý, R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409–419. doi:10.1016/j.jclepro.2015.09.072
- Muhd Norhasri, M. S., Hamidah, M. S., Mohd Fadzil, A., & Megawati, O. (2016). Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC). Construction and Building Materials, 127, 167–175. doi:10.1016/j.conbuildmat.2016.09.127
- Kubissa, W., Jaskulski, R., & Reiterman, P. (2017). Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. Journal of Renewable Materials, 5(1), 53–61. Doi:10.7569/JRM.2017.634103
- Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. Doi:10.1016/j.cemconres.2004.01.021
- Müller, C. (2006). Environmental and technical aspects of the application of blended cements in concrete. Roads and Bridges – Drogi i Mosty, 5(3), 43–72.
- Dziuk, D., Giergiczny, Z., & Garbacik, A. (2013). Calcareous fly ash as a main constituent of common cements. Roads and Bridges – Drogi i Mosty, 12(1), 57–69.
- Mokrzycki, E., & Uliasz- Bocheńczyk, A. (2003). Alternative fuels for the cement industry. Applied Energy, 74(1–2), 95–100. doi:10.1016/S0306-2619(02)00135-6
- Li, F., & Zhang, W. (2011). Combustion of sewage sludge as alternative fuel for cement industry. Journal Wuhan University of Technology, Materials Science Edition, 26(3), 556–560. doi:10.1007/s11595-011-0267-4
- Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2013). Impact of Alternative Fuels on the Cement Manufacturing Plant Performance: An Overview. Procedia Engineering, 56, 393–400. doi:10.1016/j.proeng.2013.03.138
- Dabrowska, M., & Giergiczny, Z. (2013). Chemical resistance of mortars made of cements with calcareous fly ash. Roads and Bridges – Drogi i Mosty, 12(2), 131–146. doi:10.7409/rabdim.013.010
- Chandratilake, S. R., & Dias, W. P. S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22–28. doi:10.1016/j.energy.2013.07.026
- Matarneh, R. T. (2017). Development of Sustainable Assessment Method and Design Tool for Existing and Traditional Buildings in Jordan. Architecture Civil Engineering Environment, 10(4), 15–31.
- Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235–244. doi:10.1016/j.autcon.2009.10.004
- Chen, J. J., Fung, W. W. S., Ng, P. L., & Kwan, A. K. H. (2012). Adding fillers to reduce embodied carbon and embodied energy of concrete. In Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability, Prague (pp. 91–107). Michigan: American Concrete Institute.
- Zhang, Y. R., Liu, M. H., Xie, H. B., & Wang, Y. F. (2014). Assessment of CO2 emissions and cost in fly ash concrete. In Environment, Energy and Applied Technology: Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014), Taiwan (pp. 327–331). CRC Press.
- Teixeira, E. R., Mateus, R., Camõesa, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221–2230. doi:10.1016/j.jclepro.2015.09.124
- Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. doi:10.1016/j.cemconcomp.2014.03.005
- Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. doi:10.1016/j.rser.2015.01.043
- Lewandowska, A., Noskowiak, A., Pajchrowski, G., & Zarebska, J. (2015). Between full LCA and energy certification methodology - a comparison of six methodological variants of buildings environmental assessment. International Journal of Life Cycle Assessment, 20(1), 9–22. doi:10.1007/s11367-014-0805-3
- Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. doi:10.1007/s11367-016-1045-5
- Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. doi:10.1016/j.jclepro.2012.08.001
- Yang, K. H., Jung, Y. B., Cho, M. S., & Tae, S. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. doi:10.1016/j.jclepro.2014.03.018
- Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023
- Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. International Journal of Life Cycle Assessment, 15(6), 549–556. doi:10.1007/s11367-010-0191-4
- Cassagnabère, F., Mouret, M., Escadeillas, G., Broilliard, P., & Bertrand, A. (2010). Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Construction and Building Materials, 24(7), 1109–1118. doi:10.1016/j.conbuildmat.2009.12.032
- Kubissa, W., Jaskulski, R., & Brodnan, M. (2016). Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Periodica Polytechnica Civil Engineering, 60(4), 583–590. doi:http://dx.doi.org/10.3311/PPci.8614
- Kubissa, W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172, 595–603. doi:10.1016/j.proeng.2017.02.186
- Kubissa, W. (2016). Sorpcyjność betonu (Sorptivity of concrete). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
- Woodson, D. D. (2012). Concrete Portable Handbook (1st Edition). Butterworth-Heinemann. doi:10.1016/C2009-0-64403-2
- Kozioł, W., & Czaja, P. (2010). Rock Mining in Poland – Present Situation, Perspectives. Górnictwo i Geologia, 5(3), 41–58.