Have a personal or library account? Click to login
EVALUATION OF ECOLOGICAL CONCRETE USING MULTI-CRITERIA ECOLOGICAL INDEX AND PERFORMANCE INDEX APPROACH Cover

EVALUATION OF ECOLOGICAL CONCRETE USING MULTI-CRITERIA ECOLOGICAL INDEX AND PERFORMANCE INDEX APPROACH

Open Access
|May 2019

References

  1. Grin, J., Rotmans, J., & Schot, J. (2010). Transitions to Sustainable Development. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change. doi:10.4324/9780203856598
  2. Zuo, J., & Zhao, Z. Y. (2014). Green building research-current status and future agenda: A review. Renewable and Sustainable Energy Reviews, 30, 271–281. doi:10.1016/j.rser.2013.10.021
  3. Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. doi:10.1016/j.conbuildmat.2014.07.003
  4. Węglorz, M. (2014). Selected Aspects of Sustainable Civil Engineering. Architecture Civil Engineering Environment, 7(1), 41–47.
  5. Milošević, P. (2012). Sustainable Eco Planning Strategies in East Europe (Case Study of Belgrade). Architecture Civil Engineering Environment, 5(4), 29–42.
  6. Pawlikowska-Piechotka, A., & Piechotka, M. (2012). Urban Sustainable Development and Green Agenda Perspective (Case Study in Warsaw). Architecture Civil Engineering Environment, 5(4), 43–52.
  7. Słyk, J. (2015). Methodology of Architectural Design And Rules of Cooperation in The Digital Enviroment. Augmented Space as a Field of Research and Alternative Environment for Architectural Creation. Architecture Civil Engineering Environment, 8(4), 11–18.
  8. Witkowski, H. (2015). Sustainability of Self-Compacting Concrete. Architecture Civil Engineering Environment, 8(1), 83–88.
  9. Pavlík, Z., Fořt, J., Záleská, M., Pavlíková, M., Trník, A., Medved, I., … Černý, R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements. Journal of Cleaner Production, 112, 409–419. doi:10.1016/j.jclepro.2015.09.072
  10. Muhd Norhasri, M. S., Hamidah, M. S., Mohd Fadzil, A., & Megawati, O. (2016). Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC). Construction and Building Materials, 127, 167–175. doi:10.1016/j.conbuildmat.2016.09.127
  11. Kubissa, W., Jaskulski, R., & Reiterman, P. (2017). Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. Journal of Renewable Materials, 5(1), 53–61. Doi:10.7569/JRM.2017.634103
  12. Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. Doi:10.1016/j.cemconres.2004.01.021
  13. Müller, C. (2006). Environmental and technical aspects of the application of blended cements in concrete. Roads and Bridges – Drogi i Mosty, 5(3), 43–72.
  14. Dziuk, D., Giergiczny, Z., & Garbacik, A. (2013). Calcareous fly ash as a main constituent of common cements. Roads and Bridges – Drogi i Mosty, 12(1), 57–69.
  15. Mokrzycki, E., & Uliasz- Bocheńczyk, A. (2003). Alternative fuels for the cement industry. Applied Energy, 74(1–2), 95–100. doi:10.1016/S0306-2619(02)00135-6
  16. Li, F., & Zhang, W. (2011). Combustion of sewage sludge as alternative fuel for cement industry. Journal Wuhan University of Technology, Materials Science Edition, 26(3), 556–560. doi:10.1007/s11595-011-0267-4
  17. Rahman, A., Rasul, M. G., Khan, M. M. K., & Sharma, S. (2013). Impact of Alternative Fuels on the Cement Manufacturing Plant Performance: An Overview. Procedia Engineering, 56, 393–400. doi:10.1016/j.proeng.2013.03.138
  18. Dabrowska, M., & Giergiczny, Z. (2013). Chemical resistance of mortars made of cements with calcareous fly ash. Roads and Bridges – Drogi i Mosty, 12(2), 131–146. doi:10.7409/rabdim.013.010
  19. Chandratilake, S. R., & Dias, W. P. S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22–28. doi:10.1016/j.energy.2013.07.026
  20. Matarneh, R. T. (2017). Development of Sustainable Assessment Method and Design Tool for Existing and Traditional Buildings in Jordan. Architecture Civil Engineering Environment, 10(4), 15–31.
  21. Chen, Y., Okudan, G. E., & Riley, D. R. (2010). Sustainable performance criteria for construction method selection in concrete buildings. Automation in Construction, 19(2), 235–244. doi:10.1016/j.autcon.2009.10.004
  22. Chen, J. J., Fung, W. W. S., Ng, P. L., & Kwan, A. K. H. (2012). Adding fillers to reduce embodied carbon and embodied energy of concrete. In Twelfth International Conference on Recent Advances in Concrete Technology and Sustainability, Prague (pp. 91–107). Michigan: American Concrete Institute.
  23. Zhang, Y. R., Liu, M. H., Xie, H. B., & Wang, Y. F. (2014). Assessment of CO2 emissions and cost in fly ash concrete. In Environment, Energy and Applied Technology: Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014), Taiwan (pp. 327–331). CRC Press.
  24. Teixeira, E. R., Mateus, R., Camõesa, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221–2230. doi:10.1016/j.jclepro.2015.09.124
  25. Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. doi:10.1016/j.cemconcomp.2014.03.005
  26. Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. doi:10.1016/j.rser.2015.01.043
  27. Lewandowska, A., Noskowiak, A., Pajchrowski, G., & Zarebska, J. (2015). Between full LCA and energy certification methodology - a comparison of six methodological variants of buildings environmental assessment. International Journal of Life Cycle Assessment, 20(1), 9–22. doi:10.1007/s11367-014-0805-3
  28. Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. International Journal of Life Cycle Assessment, 21(6), 847–860. doi:10.1007/s11367-016-1045-5
  29. Yang, K. H., Song, J. K., & Song, K. I. (2013). Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. doi:10.1016/j.jclepro.2012.08.001
  30. Yang, K. H., Jung, Y. B., Cho, M. S., & Tae, S. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. doi:10.1016/j.jclepro.2014.03.018
  31. Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. doi:10.1016/j.conbuildmat.2013.01.023
  32. Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. International Journal of Life Cycle Assessment, 15(6), 549–556. doi:10.1007/s11367-010-0191-4
  33. Cassagnabère, F., Mouret, M., Escadeillas, G., Broilliard, P., & Bertrand, A. (2010). Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects. Construction and Building Materials, 24(7), 1109–1118. doi:10.1016/j.conbuildmat.2009.12.032
  34. Kubissa, W., Jaskulski, R., & Brodnan, M. (2016). Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Periodica Polytechnica Civil Engineering, 60(4), 583–590. doi:http://dx.doi.org/10.3311/PPci.8614
  35. Kubissa, W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172, 595–603. doi:10.1016/j.proeng.2017.02.186
  36. Kubissa, W. (2016). Sorpcyjność betonu (Sorptivity of concrete). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  37. Woodson, D. D. (2012). Concrete Portable Handbook (1st Edition). Butterworth-Heinemann. doi:10.1016/C2009-0-64403-2
  38. Kozioł, W., & Czaja, P. (2010). Rock Mining in Poland – Present Situation, Perspectives. Górnictwo i Geologia, 5(3), 41–58.
DOI: https://doi.org/10.21307/acee-2019-009 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 97 - 107
Submitted on: May 15, 2018
Accepted on: Nov 15, 2018
Published on: May 20, 2019
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Wojciech KUBISSA, Roman JASKULSKI, Jiajian CHEN, Pui-Lam NG, Wioletta GODLEWSKA, Pavel REITERMAN, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.