Have a personal or library account? Click to login
Coagulant Cost Optimization for Surface Water Coagulation Process Cover

Coagulant Cost Optimization for Surface Water Coagulation Process

Open Access
|Apr 2019

References

  1. Deborah, V., Chapmana, Ch., Gettelc, B.G.M., Gábor, I., Heine, H.T., Kovácsf, J., Liskag, I., Oliverh, D.M., Tanosi, P., Trásyf, B., Várbírój, G. (2016). Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environmental Science & Policy, 64(10), 141–154.
  2. Taylor, S. D., He Y., Hiscock, K. M. (2016). Modelling the impacts of agricultural management practices on river water quality in Eastern England. Journal of Environmental Management, 180 147–163.
  3. Yang, L., He, J., Liu, Y., Wang, J., Jiang, L., Wang, G. (2016). Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China. Journal of Environmental Sciences, 50 93–102.
  4. Mihai, M., Dabija, G. (2008). Cationic polyelectrolytes–anionic surfactant complexes used in the coagulation flocculation processes. UPB Sci. Bull., Series B, 70(4), 29–36.
  5. Miranda, A., Paiva, J. M., Benoliel, M. J. (2010). Assessment of trace metal concentrations in the different processes at water treatment plants of EPAL. In Metals and Related Substances in Drinking Water: COST Action 637: Proceedings of the 4th International Conference Metals and Related Substances in Drinking Water, METEAU: Kristianstad, Sweden, October 13-15, 2010. IWA Publishing, 159.
  6. Roussy, J., Van Vooren, M., Dempsey, B. A., Guibal, E. (2005). Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Research, 39(14), 3247–3258.
  7. Dentel, S. K., Gossett, J. M. (1988). Mechanisms of coagulation with aluminum salts. Journal American Water Works Association, 80(4), 187–198.
  8. Stephenson, R. J., Duff, S. J. (1996). Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Research, 30(4), 781–792.
  9. Świderska-Bróż, M., Rak, M. (2004). Significance of aluminium coagulants basicity in intensification of water corrosivity. Archiwum Ochrony Środowiska, 30(2), 39–43.
  10. Matilainen, A., Vepsäläinen, M., Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in colloid and interface science, 159(2), 189–197.
  11. Zimoch I., Kotlarczyk B., Sołtysik A. (2007). The use of prehydrolyzed coagulants for the enhancement of water treatment efficiency in the Czaniec Water Treatment Plant, Ochrona Środowiska, 3 45–49.
  12. Świderska-Bróż M., Rak M. (2008). Influence of coagulant and pH valume on coloids destabilization. Seminarium naukowo-techniczne. Czysta woda dla Polski, zastosowanie koagulantów w nowoczesnych technologiach uzdatniania wody pitnej i przemysłowej, Darłówek, 7(9).
  13. Nowacka A., Włodarczyk-Makuła M. (2014). Impact of selected pre-hydrolyzed aluminum coagulants on improving of treated water quality, Ochrona Środowiska, 1, 336–350
  14. Gumińska J. (2002). Influence of temperature on the effetiveness of mountain water treatment by coagulation, Ochrona Środowiska, 1 27–32.
  15. Zhao, H., Wang, L., Hanigan, D., Westerhoff, P. (2016). Ni J. Novel ion-exchange coagulants removal more low molecular weight organics than traditional coagulants. Environmental Science Technology, 50(7), 3897–3905.
  16. Harrelkas, F., Azizi, A., Yaacoubi, A., Benhammou, A., Pons, M. N. (2009). Treatment of textile dye effluents using coagulation–flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination, 23(1), 330–339.
  17. Duan, J., Wilson, F., Graham, N., Tay, J. H. (2003). Adsorption of humic acid by powdered activated carbon in saline water conditions. Desalination, 151(1), 53–66.
  18. Wolska, M., Mołczan, M., Urbańska-Kozłowska, H., Solipiwko-Pieścik, A. (2018). Optimizing of coagulant choice for surface water treatment technology for human consumption; EPE Journal, (paper in press).
  19. Zhang, J., Zhang, F., Luo, Y., Yang, H. A. (2006). Ppreliminary study on cactus as coagulant in water treatment. Process Biochemistry, 41(3), 730–733.
  20. Chiang, P.C., Chang, E.E., Liang, C.H. (2002). NOM characteristics and treatabilities of ozonation processes. Chemosphere, 46(6), 929–935.
  21. Edzwald, J.K., Van Benschoten, J.E. (1999). Enhanced coagulation: US requirements and a broader view. Water Science and Technology, 40(9), 63–70.
  22. Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., Lechevallier, M. (2000). Impact of enhanced and optimised coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research, 34(12), 3247–3257.
  23. Mołczan, M., Szlachta, M., Karpińska, A., Biłyk, A. (2006). Zastosowanie absorbancji właściwej w nadfiolecie (SUVA) w ocenie jakości wody (Water Quality Assessment in Terms of Specific UV Absorbance). Ochrona Środowiska, 28(4), 11–16.
DOI: https://doi.org/10.21307/acee-2018-048 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 153 - 161
Submitted on: Jul 15, 2017
|
Accepted on: Jun 27, 2018
|
Published on: Apr 4, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Małgorzata WOLSKA, Marek MOŁCZAN, Anna SOLIPIWKO-PIEŚCIK, Halina URBAŃSKA-KOZŁOWSKA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.