Have a personal or library account? Click to login

Application of the Homotopy Analysis Method for Determining the free Vibrations of Beam

Open Access
|Apr 2019

References

  1. S. Abbasbandy and E. Shivanian, (2011). A new analytical technique to solve Fredholm’s integral equations, Numer. Algor. 56, 27–43.
  2. R. Brociek, E. Hetmaniok, J. Matlak, and D. Słota, (2016). Application of the homotopy analysis method for solving the systems of linear and nonlinear integral equations, Math. Model. Anal. 21, 350–370.
  3. D.S. Chauhan, R. Agrawal, and P. Rastogi, (2012). Magnetohydrodynamic slip flow and heat transfer in a porous medium over a stretching cylinder: homotopy analysis method, Numer. Heat Transfer A 62, 136–157.
  4. T. Fan and X. You, (2013). Optimal homotopy analysis method for nonlinear differential equations in the boundary leyer, Numer. Algor. 62, 337–354.
  5. H. Gliński, R. Grzymkowski, A. Kapusta, and D. Słota, (2012) Mathematica 8, WPKJS, Gliwice (in Polish).
  6. K. Gromysz, (2013). Examination of the Reinforced Concrete Plates Loaded Temporarily, Periodicaly and Kinematically, Monograph no 452, Silesian University of Technology Press, Gliwice (in Polish).
  7. E. Hetmaniok, I. Nowak, D. Słota, and R. Wituła, (2015). Convergence and error estimation of homotopy analysis method for some type of nonlinear and linear integral equations, J. Numer. Math. 23, 331–344.
  8. E. Hetmaniok, D. Słota, T. Trawiński, and R. Wituła, (2014). Usage of the homotopy analysis method for solving the nonlinear and linear integral equations of the second kind, Numer. Algor. 67, 163–185.
  9. E. Hetmaniok, D. Słota, R. Wituła, and A. Zielonka, (2015). An analytical method for solving the two-phase inverse Stefan problem, Bull. Pol. Ac.: Tech 63(3), 583–590.
  10. E. Hetmaniok, D. Słota, R. Wituła, and A. Zielonka, (2015). Solution of the one-phase inverse Stefan problem by using the homotopy analysis method, Appl. Math. Modelling 39, 6793–6805.
  11. T. Kaczorek, (2016). A new approach to the realization problem for fractional discrete-time linear systems, Bull. Pol. Ac.: Tech 64(1), 9–14.
  12. Y. Khan, M. Fardi, (2015). A new efficient multi-parametric homotopy approach for two-dimensional Fredholm integral equations of the second kind, Hacettepe J. Math. Stat. 44, 93–99.
  13. Y. Khan, K. Sayevand, M. Fardi, M. Ghasemi, (2014). A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations, Appl. Math. Comput. 249, 229–236.
  14. R. Lewandowski, (2006). Dynamics of the Building Structures, Poznań University of Technology Press, Poznań 2006 (in Polish).
  15. S. Liao, (1998). Homotopy analysis method: a new analytic method for nonlinear problems, Appl. Math. Mech. – Engl. Ed. 19, 957–962.
  16. S. Liao, (2003). Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall–CRC Press, Boca Raton.
  17. S. Liao, (2009). Notes on the homotopy analysis method: some definitions and theorems, Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997.
  18. S. Liao, (2010). An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2015.
  19. S. Liao, (2012). Homotopy Analysis Method in Nonlinear Differential Equations, Springer/Higher Education Press, Berlin/Beijing.
  20. Z.M. Odibat, (2010). A study on the convergence of homotopy analysis method, Appl. Math. Comput. 217, 782–789.
  21. P. Ostalczyk, (2015). On simplified forms of the fractional-order backward difference and related fractional-order linear discrete-time system description, Bull. Pol. Ac.: Tech 63(2), 423–433.
  22. M. Russo and R.A. Van Gorder, (2013). Control of error in the homotopy analysis of nonlinear Klein-Gordon initial value problems, Appl. Math. Comput. 219, 6494–6509.
  23. D. Słota, (2011). Homotopy Analysis Method and the Examples of Its Applications, Wyd. Pol. Śl., Gliwice (in Polish).
  24. W. Sumelka, (2016). Fractional calculus for continuum mechanics – anisotropic non-locality, Bull. Pol. Ac.: Tech 64 (2), 361–372.
  25. M. Turkyilmazoglu, (2010). A note on the homotopy analysis method, Appl. Math. Lett. 23, 1226–1230.
  26. M. Turkyilmazoglu, (2010). Convergence of the homotopy analysis method, arXiv, 1006.4460v1.
  27. K. Vajravelu, R.A. Van Gorder, (2012). Nonlinear Flow Phenomena and Homotopy Analysis. Fluid Flow and Heat Transfer, Springer/Higher Education Press, Berlin/Beijing.
  28. R.A. Van Gorder, (2012). Control of error in the homotopy analysis of semi-linear elliptic boundary value problems, Numer. Algor. 61, 613–629.
  29. R.A. Van Gorder and K. Vajravelu, (2009). On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach, Commun. Nonlinear Sci. Numer. Simulat. 14, 4078–4089.
  30. X. Zhang, B. Tang, and Y. He, (2011). Homotopy analysis method for higher-order fractional integrodifferential equations, Comput. Math. Appl. 62, 3194–3203.
  31. M. Zurigat, S. Momani, Z. Odibat, and A. Alawneh, (2010). The homotopy analysis method for handling systems of fractional differential equations, Appl. Math. Modelling 34, 24–35.
DOI: https://doi.org/10.21307/acee-2018-006 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 61 - 71
Submitted on: Oct 24, 2017
Accepted on: Feb 19, 2018
Published on: Apr 1, 2019
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Krzysztof GROMYSZ, Damian SŁOTA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.